Use of short roll C-arm computed tomography and fully automated 3D analysis tools to guide transcatheter aortic valve replacement

Determination of the coplanar view is a critical component of transcatheter aortic valve replacement (TAVR). The safety and accuracy of a novel reduced angular range C-arm computed tomography (CACT) approach coupled with a fully automated 3D analysis tool package to predict the coplanar view in TAVR...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Cardiovascular Imaging Vol. 32; no. 7; pp. 1145 - 1152
Main Authors Kim, Michael S., Bracken, John, Eshuis, Peter, Chen, S. Y. James, Fullerton, David, Cleveland, Joseph, Messenger, John C., Carroll, John D.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Determination of the coplanar view is a critical component of transcatheter aortic valve replacement (TAVR). The safety and accuracy of a novel reduced angular range C-arm computed tomography (CACT) approach coupled with a fully automated 3D analysis tool package to predict the coplanar view in TAVR was evaluated. Fifty-seven patients with severe symptomatic aortic stenosis deemed prohibitive-risk for surgery and who underwent TAVR were enrolled. Patients were randomized 2:1 to CACT vs. angiography (control) in estimating the coplanar view. These approaches to determine the coplanar view were compared quantitatively. Radiation doses needed to determine the coplanar view were recorded for both the CACT and control patients. Use of CACT offered good agreement with the actual angiographic view utilized during TAVR in 34 out of 41 cases in which a CACT scan was performed (83 %). For these 34 cases, the mean angular magnitude difference, taking into account both oblique and cranial/caudal angulation, was 1.3° ± 0.4°, while the maximum difference was 7.3°. There were no significant differences in the mean total radiation dose delivered to patients between the CACT and control groups as measured by either dose area product (207.8 ± 15.2 Gy cm 2 vs. 186.1 ± 25.3 Gy cm 2 , P = 0.47) or air kerma (1287.6 ± 117.7 mGy vs. 1098.9 ± 143.8 mGy, P = 0.32). Use of reduced-angular range CACT coupled with fully automated 3D analysis tools is a safe, practical, and feasible method by which to determine the optimal angiographic deployment view for guiding TAVR procedures.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1569-5794
1573-0743
1875-8312
DOI:10.1007/s10554-016-0886-0