Intravenously Injected Amyloid-β Peptide With Isomerized Asp7 and Phosphorylated Ser8 Residues Inhibits Cerebral β-Amyloidosis in AβPP/PS1 Transgenic Mice Model of Alzheimer's Disease

Cerebral β-amyloidosis, an accumulation in the patient's brain of aggregated amyloid-β (Aβ) peptides abnormally saturated by divalent biometal ions, is one of the hallmarks of Alzheimer's disease (AD). Earlier, we found that exogenously administrated synthetic Aβ with isomerized Asp7 (isoD...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 12; p. 518
Main Authors Kozin, Sergey A, Barykin, Evgeny P, Telegin, Georgy B, Chernov, Alexander S, Adzhubei, Alexei A, Radko, Sergey P, Mitkevich, Vladimir A, Makarov, Alexander A
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 23.08.2018
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cerebral β-amyloidosis, an accumulation in the patient's brain of aggregated amyloid-β (Aβ) peptides abnormally saturated by divalent biometal ions, is one of the hallmarks of Alzheimer's disease (AD). Earlier, we found that exogenously administrated synthetic Aβ with isomerized Asp7 (isoD7-Aβ) induces Aβ fibrillar aggregation in the transgenic mice model of AD. IsoD7-Aβ molecules have been implied to act as seeds enforcing endogenous Aβ to undergo pathological aggregation through zinc-mediated interactions. On the basis of our findings on zinc-induced oligomerization of the metal-binding domain of various Aβ species, we hypothesize that upon phosphorylation of Ser8, isoD7-Aβ loses its ability to form zinc-bound oligomeric seeds. In this work, we found that (i) isoD7-Aβ with phosphorylated Ser8 (isoD7-pS8-Aβ) is less prone to spontaneous and zinc-induced aggregation in comparison with isoD7-Aβ and intact Aβ as shown by thioflavin T fluorimetry and dynamic light scattering data, and (ii) intravenous injections of isoD7-pS8-Aβ significantly slow down the progression of institutional β-amyloidosis in AβPP/PS1 transgenic mice as shown by the reduction of the congophilic amyloid plaques' number in the hippocampus. The results support the role of the zinc-mediated oligomerization of Aβ species in the modulation of cerebral β-amyloidosis and demonstrate that isoD7-pS8-Aβ can serve as a potential molecular tool to block the aggregation of endogenous Aβ in AD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Subashchandrabose Chinnathambi, National Chemical Laboratory (CSIR), India; Giuseppe D. Ciccotosto, University of Melbourne, Australia
Edited by: Maria Jimenez-Sanchez, King’s College London, United Kingdom
This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience
ISSN:1662-4548
1662-453X
1662-453X
DOI:10.3389/fnins.2018.00518