Evaluating capture-recapture population and density estimation of tigers in a population with known parameters

Conservation strategies for endangered species require accurate and precise estimates of abundance. Unfortunately, obtaining unbiased estimates can be difficult due to inappropriate estimator models and study design. We evaluate population-density estimators for tigers Panthera tigris in Kanha Tiger...

Full description

Saved in:
Bibliographic Details
Published inAnimal conservation Vol. 13; no. 1; pp. 94 - 103
Main Authors Sharma, R.K, Jhala, Y, Qureshi, Q, Vattakaven, J, Gopal, R, Nayak, K
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 2010
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conservation strategies for endangered species require accurate and precise estimates of abundance. Unfortunately, obtaining unbiased estimates can be difficult due to inappropriate estimator models and study design. We evaluate population-density estimators for tigers Panthera tigris in Kanha Tiger Reserve, India, using camera traps in conjunction with telemetry (n=6) in a known minimum population of 14 tigers. An effort of 462 trap nights over 42 days yielded 44 photographs of 12 adult tigers. Using closed population estimators, the best-fit model (program capture) accounted for individual heterogeneity (Mh). The least biased and precise population estimate ( [graphic removed] (SE) [ [graphic removed] ]) was obtained by the Mh Jackknife 1 (JK1) [14 (1.89)] in program care-2. Tiger density ( [graphic removed] (SE) [ [graphic removed] ]) per 100 km² was estimated at 13 (2.08) when the effective trapping area was estimated using the half mean maximum distance moved (1/2 MMDM), 8.1 (2.08), using the home-range radius, 7.8 (1.59), with the full MMDM and 8.0 (3.0) with the spatial likelihood method in program density 4.1. The actual density of collared tigers (3.27 per 100 km²) was closely estimated by home-range radius at 3.9 (0.76), full MMDM at 3.48 (0.81) and spatial likelihood at 3.78 (1.54), but overestimated by 1/2 MMDM at 6 (0.81) tigers per 100 km². Sampling costs (Rs. 450 per camera day) increased linearly with camera density, while the precision of population estimates leveled off at 25 cameras per 100 km². At simulated low tiger densities, a camera density of 50 per 100 km² with an effort of 8 trap nights km⁻² provided 95% confidence coverage, but estimates lacked precision.
Bibliography:http://dx.doi.org/10.1111/j.1469-1795.2009.00305.x
ArticleID:ACV305
istex:CD47056C163540C713A17E5E632F2E4928199EB5
ark:/67375/WNG-XVJCXLRN-K
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1367-9430
1469-1795
DOI:10.1111/j.1469-1795.2009.00305.x