Lanthanide‐doped rare earth nanoparticles for near‐infrared‐II imaging and cancer therapy

The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applicat...

Full description

Saved in:
Bibliographic Details
Published inBMEmat (Print) Vol. 1; no. 3
Main Authors Zhao, Hongxia, Xiao, He, Liu, Ying, Ju, Huangxian
Format Journal Article
LanguageEnglish
Published Jinan John Wiley & Sons, Inc 01.09.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed. Lanthanide‐doped nanoparticles (LDNPs) offer various emissions in the NIR‐II region by co‐doping different rare earth metal ions. This review summarizes different sensitizer ions for LDNPs with NIR‐II emissions, and their applications in “always on” in vivo imaging, activatable in vivo imaging, and NIR‐II imaging‐guided therapy. NIR‐II imaging guided theranostics provides controllable responsiveness, high resolution, improved penetration depth and low background interference.
AbstractList The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed. Lanthanide‐doped nanoparticles (LDNPs) offer various emissions in the NIR‐II region by co‐doping different rare earth metal ions. This review summarizes different sensitizer ions for LDNPs with NIR‐II emissions, and their applications in “always on” in vivo imaging, activatable in vivo imaging, and NIR‐II imaging‐guided therapy. NIR‐II imaging guided theranostics provides controllable responsiveness, high resolution, improved penetration depth and low background interference.
Abstract The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed.
The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed.
The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed.
Author Liu, Ying
Xiao, He
Zhao, Hongxia
Ju, Huangxian
Author_xml – sequence: 1
  givenname: Hongxia
  surname: Zhao
  fullname: Zhao, Hongxia
  organization: Nanjing University
– sequence: 2
  givenname: He
  surname: Xiao
  fullname: Xiao, He
  organization: Nanjing University
– sequence: 3
  givenname: Ying
  orcidid: 0000-0001-5718-7804
  surname: Liu
  fullname: Liu, Ying
  email: yingliu@nju.edu.cn
  organization: Nanjing University
– sequence: 4
  givenname: Huangxian
  orcidid: 0000-0002-6741-5302
  surname: Ju
  fullname: Ju, Huangxian
  email: hxju@nju.edu.cn
  organization: Nanjing University
BookMark eNp9kc1uEzEUhS1UJErppk9giR1Siv9mxl5CBW2kVN20a-uOfZ04SuzBMxXKro_AM_IkOJ3CAiHkhY-uv3N1rPOWnKSckJALzi45Y-Jjv9-LSy6YFK_IqegavuiUak_-aKnfkPNx3LIK604K3Z4Su4I0bSBFjz-ffvg8oKcFClKEMm1ogpSHqqLb4UhDLjTVh0rGFI6Yr3K5pHEP65jWFJKnDpLDQqcNFhgO78jrALsRz1_uM_Lw9cv91c1idXe9vPq0WjjFGrFwWvjecQ9KcumDRw5t6L3hQfdOe69YCAj1aPDcOGCh77mTxrledC0yeUaW816fYWuHUhOVg80Q7fMgl7V9-YYVWnUIBsArobAxxmngkrVtY5rQqrbuej_vGkr-9ojjZLf5saQa30pmmOBGKlEpNlOu5HEsGKyLE0wxp6lA3FnO7LEVe2zFPrdSLR_-svwO-k-Yz_D3uMPDf0j7-fZWzJ5fiZai0Q
CitedBy_id crossref_primary_10_1021_acsami_4c17186
crossref_primary_10_1142_S1793545825300022
crossref_primary_10_1088_1748_605X_ada3d0
crossref_primary_10_1016_j_foodchem_2023_138100
crossref_primary_10_1021_acsnano_4c16280
crossref_primary_10_1039_D4CP03265A
crossref_primary_10_1038_s41377_024_01539_6
crossref_primary_10_1002_adfm_202311857
crossref_primary_10_1021_acs_cgd_3c01140
crossref_primary_10_1002_tcr_202400171
crossref_primary_10_3389_fcell_2024_1514399
crossref_primary_10_1039_D4TB02207F
crossref_primary_10_1002_smtd_202301309
Cites_doi 10.1038/s41467-017-01050-0
10.1002/adom.201801417
10.1021/nn304373q
10.1016/j.snb.2017.04.160
10.1038/s41565-018-0221-0
10.1039/C8CS00234G
10.1016/j.biomaterials.2017.04.046
10.1002/ange.202108124
10.1039/D0SC04789A
10.1002/anie.202209592
10.1038/s41467-017-00917-6
10.1002/anie.201903536
10.1039/C5SC04229A
10.1016/j.nantod.2021.101120
10.1039/C8NR01139G
10.1002/ange.202015273
10.1021/jacs.0c07022
10.1002/ange.202106730
10.1021/acs.analchem.9b05599
10.1021/jacs.5b04509
10.1016/j.crci.2010.05.007
10.1021/acs.analchem.8b00603
10.1021/nn506107c
10.1007/s10854-021-06035-w
10.1002/smll.202205647
10.1016/j.jre.2017.07.009
10.1021/acs.accounts.5b00009
10.7150/thno.29817
10.1039/C6CS00719H
10.1002/ange.201901964
10.1007/s12274-014-0548-2
10.1021/acs.nanolett.1c04356
10.1021/acsnano.6b05949
10.1038/s41551-016-0010
10.7150/thno.31864
10.1039/C4CS00188E
10.1002/smll.201301716
10.1021/acsnano.1c09960
10.1021/acs.nanolett.9b00140
10.1039/C8CS00618K
10.1016/j.jre.2020.01.021
10.1039/C7TB00070G
10.1002/adom.201800690
10.1039/b518262j
10.1038/s41467-018-05113-8
10.1021/acsnano.0c00082
10.1002/adma.201604764
10.1002/adom.201701142
10.1016/j.isci.2020.100962
10.1021/acs.analchem.1c05253
10.1021/acsnano.0c08532
10.1021/acsnano.1c09635
10.1039/D0NR01098G
10.1021/nl504123r
10.1007/s12274-020-2661-8
10.1038/ncomms3199
10.1152/physrev.00029.2006
10.1002/ange.201802889
10.1002/anie.201407420
10.1021/nn2042362
10.1021/jacs.6b08973
10.1039/c1nr10466g
10.1002/anie.202212721
10.1016/j.biomaterials.2022.121873
10.1021/acs.nanolett.1c01962
10.1038/nmat4846
10.1038/s41563-021-01063-7
10.1021/nl025562q
10.1038/s41551-017-0056
10.1016/j.jre.2018.03.015
10.1002/adma.202001172
10.1016/j.nantod.2022.101439
10.1002/adma.201804982
10.1002/adma.201401825
10.1016/j.ccr.2018.11.014
10.1038/s41467-019-10056-9
10.1002/ange.201507473
10.1038/nm.4087
10.1021/acsnano.8b01893
10.1038/s41467-018-05798-x
10.1039/C5TB02023A
10.1021/acs.nanolett.8b05148
10.1016/j.optmat.2011.01.006
10.1002/adfm.202009942
10.1002/adma.202102950
10.1021/acsnano.8b05431
10.1039/C8SC00927A
10.1002/adom.201900917
10.1038/s41587-019-0262-4
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/bmm2.12032
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2751-7446
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2847ea9aad424e599c8a13066595f646
10_1002_bmm2_12032
BMM212032
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20200010
– fundername: National Natural Science Foundation of China
  funderid: 21890741; 21974064; 22022405
– fundername: State Key Laboratory of Analytical Chemistry for Life Sciences
  funderid: 5431ZZXM2204; 5431ZZXM2307
GroupedDBID 0R~
24P
ACCMX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
PIMPY
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4052-c82dbc1da4313dfde1a6fbd91f8bc8dd40ffeaeae8ad19ca0fbb1c39ccb276e03
IEDL.DBID BENPR
ISSN 2751-7438
IngestDate Wed Aug 27 01:19:11 EDT 2025
Mon Jun 30 17:14:20 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Tue Jul 01 04:32:45 EDT 2025
Wed Jan 22 17:16:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4052-c82dbc1da4313dfde1a6fbd91f8bc8dd40ffeaeae8ad19ca0fbb1c39ccb276e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5718-7804
0000-0002-6741-5302
OpenAccessLink https://www.proquest.com/docview/3090219342?pq-origsite=%requestingapplication%
PQID 3090219342
PQPubID 6860420
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_2847ea9aad424e599c8a13066595f646
proquest_journals_3090219342
crossref_citationtrail_10_1002_bmm2_12032
crossref_primary_10_1002_bmm2_12032
wiley_primary_10_1002_bmm2_12032_BMM212032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace Jinan
PublicationPlace_xml – name: Jinan
PublicationTitle BMEmat (Print)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
2017; 8
2017; 1
2021; 21
2013; 4
2021; 20
2010; 13
2022; 291
2019; 10
2019; 13
2017; 46
2019; 58
2014; 26
2019; 19
2020; 14
2020; 13
2020; 12
2022; 22
2013; 7
2018; 47
2018; 130
2018; 6
2021; 38
2015; 48
2018; 9
2021; 32
2021; 31
2021; 33
2015; 137
2020; 92
2015; 44
2018; 30
2014; 8
2018; 36
2014; 10
2014; 53
2019; 7
2015; 15
2019; 9
2015; 127
2020; 142
2022; 94
2006; 16
2019; 37
2020; 38
2002; 2
2011; 33
2017; 250
2017; 29
2022; 43
2020; 32
2011; 3
2017; 134
2015; 9
2019; 381
2016; 4
2016; 7
2021; 15
2021; 12
2023
2022
2022; 61
2017; 16
2017; 11
2019; 48
2018; 90
2016; 138
2020; 23
2021; 133
2012; 6
2018; 12
2007; 87
2018; 10
2019; 133
2022; 16
2022; 18
2018; 13
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
Zhao M. Y. (e_1_2_7_17_1) 2022
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Chen Y. (e_1_2_7_92_1) 2023
References_xml – volume: 8
  start-page: 737
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 636
  year: 2014
  publication-title: Nano Res.
– volume: 291
  year: 2022
  publication-title: Biomaterials
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 94
  year: 2022
  publication-title: Anal. Chem.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 90
  year: 2018
  publication-title: Anal. Chem.
– volume: 33
  year: 2011
  publication-title: Opt. Mater.
– volume: 37
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 134
  start-page: 202
  year: 2017
  publication-title: Biomaterials
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 130
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 381
  start-page: 104
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 22
  start-page: 783
  year: 2022
  publication-title: Nano Lett.
– volume: 43
  year: 2022
  publication-title: Nano Today
– volume: 38
  start-page: 451
  year: 2020
  publication-title: J. Rare Earths
– volume: 4
  year: 2013
  publication-title: Nat. Commun.
– volume: 87
  start-page: 315
  year: 2007
  publication-title: Physiol. Rev.
– volume: 16
  year: 2006
  publication-title: J. Mater. Chem.
– volume: 133
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 537
  year: 2017
  publication-title: Nat. Mater.
– volume: 92
  year: 2020
  publication-title: Anal. Chem.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 46
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 250
  start-page: 147
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 48
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 547
  year: 2016
  publication-title: Nat. Med.
– volume: 13
  start-page: 941
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 10
  year: 2019
  publication-title: Nat. Commun.
– year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2012
  publication-title: ACS Nano
– volume: 48
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 9
  start-page: 369
  year: 2019
  publication-title: Theranostics
– volume: 32
  year: 2021
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 9
  year: 2019
  publication-title: Theranostics
– volume: 36
  start-page: 113
  year: 2018
  publication-title: J. Rare Earths
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 44
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 127
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 87
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 36
  start-page: 939
  year: 2018
  publication-title: J. Rare Earths
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 1
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2018
  publication-title: Chem. Sci.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 13
  start-page: 248
  year: 2019
  publication-title: ACS Nano
– volume: 10
  year: 2014
  publication-title: Small
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 733
  year: 2002
  publication-title: Nano Lett.
– volume: 8
  start-page: 902
  year: 2017
  publication-title: Nat. Commun.
– volume: 38
  year: 2021
  publication-title: Nano Today
– volume: 47
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  year: 2020
  publication-title: Nano Res.
– volume: 19
  year: 2019
  publication-title: Nano Lett.
– volume: 21
  year: 2021
  publication-title: Nano Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 96
  year: 2015
  publication-title: Nano Lett.
– volume: 26
  year: 2014
  publication-title: Adv. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 358
  year: 2017
  publication-title: ACS Nano
– volume: 13
  start-page: 668
  year: 2010
  publication-title: C. R. Chim.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2016
  publication-title: Chem. Sci.
– volume: 20
  year: 2021
  publication-title: Nat. Mater.
– volume: 3
  year: 2011
  publication-title: Nanoscale
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-017-01050-0
– ident: e_1_2_7_19_1
  doi: 10.1002/adom.201801417
– ident: e_1_2_7_39_1
  doi: 10.1021/nn304373q
– ident: e_1_2_7_42_1
  doi: 10.1016/j.snb.2017.04.160
– ident: e_1_2_7_55_1
  doi: 10.1038/s41565-018-0221-0
– ident: e_1_2_7_10_1
  doi: 10.1039/C8CS00234G
– ident: e_1_2_7_31_1
  doi: 10.1016/j.biomaterials.2017.04.046
– ident: e_1_2_7_60_1
  doi: 10.1002/ange.202108124
– ident: e_1_2_7_12_1
  doi: 10.1039/D0SC04789A
– ident: e_1_2_7_76_1
  doi: 10.1002/anie.202209592
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-017-00917-6
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201903536
– ident: e_1_2_7_6_1
  doi: 10.1039/C5SC04229A
– ident: e_1_2_7_51_1
  doi: 10.1016/j.nantod.2021.101120
– ident: e_1_2_7_32_1
  doi: 10.1039/C8NR01139G
– ident: e_1_2_7_59_1
  doi: 10.1002/ange.202015273
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.0c07022
– ident: e_1_2_7_63_1
  doi: 10.1002/ange.202106730
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.analchem.9b05599
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.5b04509
– ident: e_1_2_7_15_1
  doi: 10.1016/j.crci.2010.05.007
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.analchem.8b00603
– ident: e_1_2_7_47_1
  doi: 10.1021/nn506107c
– ident: e_1_2_7_48_1
  doi: 10.1007/s10854-021-06035-w
– ident: e_1_2_7_91_1
  doi: 10.1002/smll.202205647
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jre.2017.07.009
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.accounts.5b00009
– ident: e_1_2_7_87_1
  doi: 10.7150/thno.29817
– ident: e_1_2_7_5_1
  doi: 10.1039/C6CS00719H
– ident: e_1_2_7_58_1
  doi: 10.1002/ange.201901964
– ident: e_1_2_7_46_1
  doi: 10.1007/s12274-014-0548-2
– ident: e_1_2_7_64_1
  doi: 10.1021/acs.nanolett.1c04356
– ident: e_1_2_7_4_1
  doi: 10.1021/acsnano.6b05949
– ident: e_1_2_7_9_1
  doi: 10.1038/s41551-016-0010
– ident: e_1_2_7_86_1
  doi: 10.7150/thno.31864
– ident: e_1_2_7_8_1
  doi: 10.1039/C4CS00188E
– ident: e_1_2_7_41_1
  doi: 10.1002/smll.201301716
– ident: e_1_2_7_67_1
  doi: 10.1021/acsnano.1c09960
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.nanolett.9b00140
– ident: e_1_2_7_85_1
  doi: 10.1039/C8CS00618K
– year: 2023
  ident: e_1_2_7_92_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jre.2020.01.021
– ident: e_1_2_7_30_1
  doi: 10.1039/C7TB00070G
– ident: e_1_2_7_33_1
  doi: 10.1002/adom.201800690
– ident: e_1_2_7_40_1
  doi: 10.1039/b518262j
– ident: e_1_2_7_77_1
  doi: 10.1038/s41467-018-05113-8
– ident: e_1_2_7_90_1
  doi: 10.1021/acsnano.0c00082
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201604764
– ident: e_1_2_7_34_1
  doi: 10.1002/adom.201701142
– ident: e_1_2_7_74_1
  doi: 10.1016/j.isci.2020.100962
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.analchem.1c05253
– ident: e_1_2_7_78_1
  doi: 10.1021/acsnano.0c08532
– ident: e_1_2_7_80_1
  doi: 10.1021/acsnano.1c09635
– ident: e_1_2_7_24_1
  doi: 10.1039/D0NR01098G
– ident: e_1_2_7_29_1
  doi: 10.1021/nl504123r
– ident: e_1_2_7_16_1
  doi: 10.1007/s12274-020-2661-8
– ident: e_1_2_7_28_1
  doi: 10.1038/ncomms3199
– ident: e_1_2_7_71_1
  doi: 10.1152/physrev.00029.2006
– ident: e_1_2_7_18_1
  doi: 10.1002/ange.201802889
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201407420
– ident: e_1_2_7_45_1
  doi: 10.1021/nn2042362
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.6b08973
– ident: e_1_2_7_25_1
  doi: 10.1039/c1nr10466g
– ident: e_1_2_7_66_1
  doi: 10.1002/anie.202212721
– ident: e_1_2_7_79_1
  doi: 10.1016/j.biomaterials.2022.121873
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.nanolett.1c01962
– ident: e_1_2_7_3_1
  doi: 10.1038/nmat4846
– ident: e_1_2_7_54_1
  doi: 10.1038/s41563-021-01063-7
– ident: e_1_2_7_22_1
  doi: 10.1021/nl025562q
– ident: e_1_2_7_57_1
  doi: 10.1038/s41551-017-0056
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jre.2018.03.015
– ident: e_1_2_7_72_1
  doi: 10.1002/adma.202001172
– ident: e_1_2_7_81_1
  doi: 10.1016/j.nantod.2022.101439
– ident: e_1_2_7_82_1
  doi: 10.1002/adma.201804982
– ident: e_1_2_7_84_1
  doi: 10.1002/adma.201401825
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ccr.2018.11.014
– year: 2022
  ident: e_1_2_7_17_1
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_7_83_1
  doi: 10.1038/s41467-019-10056-9
– ident: e_1_2_7_11_1
  doi: 10.1002/ange.201507473
– ident: e_1_2_7_73_1
  doi: 10.1038/nm.4087
– ident: e_1_2_7_88_1
  doi: 10.1021/acsnano.8b01893
– ident: e_1_2_7_89_1
  doi: 10.1038/s41467-018-05798-x
– ident: e_1_2_7_43_1
  doi: 10.1039/C5TB02023A
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.nanolett.8b05148
– ident: e_1_2_7_44_1
  doi: 10.1016/j.optmat.2011.01.006
– ident: e_1_2_7_75_1
  doi: 10.1002/adfm.202009942
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.202102950
– ident: e_1_2_7_52_1
  doi: 10.1021/acsnano.8b05431
– ident: e_1_2_7_62_1
  doi: 10.1039/C8SC00927A
– ident: e_1_2_7_68_1
  doi: 10.1002/adom.201900917
– ident: e_1_2_7_27_1
  doi: 10.1038/s41587-019-0262-4
SSID ssj0002873286
Score 2.376588
SecondaryResourceType review_article
Snippet The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering;...
The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering;...
Abstract The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aqueous solutions
bioimaging
cancer theranostics
Cancer therapies
Energy
Information storage
lanthanide‐doped nanoparticles
Light
Medical diagnosis
Nanoparticles
NIR‐II fluorescence
Polyethylene glycol
Radiation
second near‐infrared window
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skx7ET6xWCehFYe1uNt1ujipKK9aTQm8hySS0Yrel1oM3f4K_0V_iJLuWFkQvspewO7Bh3mzmZZm8IeQEMbaKC4Orn9YRZy6JRMtBJMDGKbB2Zow_jdy7zzqP_Lbf6i-0-vI1YaU8cOm4pl8-rRJKAWfctoQwucJ1N_M6eC7jQWwbc97CZuop_DLyIjTZXI-UNfVoxM4T3y98KQMFof4ldrnIUUOSudkg6xU7pBflrDbJii22yNqCZuA2kXfoi4EqhmA_3z9gPLFAccNrKYbsbEALVeA2uKp2o8hIaYEP0BIjyZsBDrtdOhyF7kRUFUCNB35Ky5NYbzvk8eb64aoTVV0SIoNki0UmZ6BNAgqpQAoObKIyp0EkLtcmB-Cxc1bhlStIhFGx0zoxqUAQEApEZJfUinFh9wiNLebztraxgpQDIHXE3ZjKHROctUWe1snpt-ekqSTEfSeLZ1mKHzPpvSyDl-vkeG47KYUzfrS69ADMLbzYdbiBISArZ8m_QqBOGt_wyeoLfJGpLzhFdsrxHWcB0l-mIS97PRZG-_8xoQOy6rvSl6VoDVKbTV_tIXKXmT4KYfoFwyzuxg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-COhFodqm2W4DXlQUV1zxoOAtJJlEBbe77K4Hb_4Ef6O_xEna7SqIIL2Edkrb-ZLOl5D5hpA9xNgqLgz-_bSOOHNJJJoOIgE2ToG1MmN8NnLnJru851cPzYcpcjzOhSn1IeoFNz8ywv_aD3Clh0cT0VDd7bLDxBcAnyazPrfWK-czfluvsOBcIGWh1CNrNZMIQ2Ve65Oyo8ntPyJSEO7_wTa_c9YQdC4WyULFFulJCe8SmbLFMpn_piG4QuQ1-uZJFc9gP98_oNe3QPGrLMUuPHqihSpwWlztfqPIUGmBF9ASe5Y3A2y22_S5G6oVUVUANb4jDGiZmfW2Su4vzu_OLqOqakJkkHyxyOQMtElAITVIwYFNVOY0iMTl2uQAPHbOKjxyBYkwKnZaJyYVCApCgwitkZmiV9h1QmOL8b2lbawg5QBIJXF2pnLHBGctkacNsj_2nDSVpLivbPEiSzFkJr2XZfByg-zWtv1SSONXq1MPQG3hxa_Did7gUVbOkj6iWiWUAs64bQphcoWhOPPSiC7jWYNsjeGT1YgcytRvQEW2yvEZBwHSP15DnnY6LLQ2_mO8SeZ8NfpyC9oWmRkNXu02cpaR3gld8wvx5umF
  priority: 102
  providerName: Wiley-Blackwell
Title Lanthanide‐doped rare earth nanoparticles for near‐infrared‐II imaging and cancer therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbmm2.12032
https://www.proquest.com/docview/3090219342
https://doaj.org/article/2847ea9aad424e599c8a13066595f646
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fSxwxEB-qvrQPxf6j19oj0L60sHU3m9tLnsQrioonUir4FpJMokJv73peH_rWj-Bn9JM4yeauCkX2JWSHZZmZzfwmO_kNwCeysTdCOVr9rC0ED1WhBgELhb6skQ8b5-Jp5PFJc3Amjs4H53nD7TqXVS7XxLRQ49TFPfLtOhYQEtoQfGf2q4hdo-Lf1dxCYw02aAmWlHxtjPZOTr-vdlloruap3SMfDqqCwqVccZTybTuZ8K9V7CH-ICol8v4HiPM-bk2BZ38TnmfEyHY7E7-AJ759Cc_u8Qi-An1M-rk07RX62783OJ15ZJQEe0ZuvLhkrWkpNc4VcIxQKmvpBkmSd0UxpOHhIbuapI5FzLTIXHSGOetOZ_15DWf7ez--HRS5c0LhCIDxwkmO1lVoCB7UGNBXpgkWVRWkdRJRlCF4Q5c0WClnymBt5WpFhiHzkJXewHo7bf1bYKWnGD-0vjRYC0SCk5ShGRm4EnyoZN2Dz0vNaZdpxWN3i5-6I0TmOmpZJy334ONKdtaRafxXahQNsJKIBNhpYjq_0FlZOkZVb5QxKLjwA6WcNBSOm0iPGBrR9GBraT6dv8pr_c-HevAlmfSR19Cj8Zin0bvHn_UensYe9F3h2RasL-a__QdCKgvbhzUuTvvZKfsp378DdM3sKA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7gF4QPwVhQGWgAeQwhLHTeMHhChsallbIbRJezO2z2aTaFq6IrQ3PgKfhA_FJ-HsJGWT0N6mvFjJyXLuLne_c853AM9Ixk4Lacn6GZMI7rNE9jwmEl2aI-8X1obTyJNpMTwQHw57hxvwuz0LE9IqW5sYDTXObdgj385DAiGhDcHfLL4loWtU-LvattCo1WLPnf6gkO3k9eg9yfc557s7---GSdNVILEETnhiS47GZqjJdebo0WW68AZl5ktjS0SReu80XaXGTFqdemMym0taNC2d3oDmvQKbIqdQpgObg53px0_rXR2KP3Ie20vyfi9LyD2X65qofNvMZvxVFnqWn_OCsVnAOYR7FidHR7d7E240CJW9rVXqFmy46jZcP1O38A6oMcnjSFfH6P78_IXzhUNGQbdjxJ_VEat0RaF4k3HHCBWzih4QJWlzIEMajkbseBY7JDFdIbNB-ZasPg12ehcOLoWn96BTzSt3H1jqCFP0jUs15gKR4CtFhLr0XArel2XehRct55RtypiHbhpfVV2AmavAZRW53IWna9pFXbzjv1SDIIA1RSi4HW_Ml19UwywVvLjTUmsUXLielLbU5P6LUI7RF6LowlYrPtVYgRP1T2e78DKK9IJlqMFkwuPowcVzPYGrw_3JWI1H072HcI0T6qqT3rags1p-d48IJa3M40Y1GXy-7K_hL1acK5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Bb9MwFH4aRUJwQDBAlG1gCS5MCkscN40lLhtQrWytdtik3Szbz94q0bTqusNu_IT9xv0Snp00WyWEhHKxkhcleZ_t99mxvwfwiTB2WkhLvZ8xieA-S2TPYyLRpTnyfmFt2I08GheHZ-Lnee98A76u9sLU-hDthFtoGbG_Dg18jn7vXjTUTKf8SxYSgD-Cx_FvX9B1FiftDAuNBXIeUz3yfi9LKFSWrT4p37u_fS0iReH-Nbb5kLPGoDN4Ac8btsj2a3hfwoarNuHZAw3BV6COyTeXupqgu_t9i7O5Q0Zf5RhV4eUlq3RFw-Jm9RsjhsoqukCWVLOCGVJxOGSTacxWxHSFzIaKsGD1zqyb13A2-HH67TBpsiYklsgXT2zJ0dgMNVGDHD26TBfeoMx8aWyJKFLvnaaj1JhJq1NvTGZzSaAQNITQG-hUs8q9BZY6iu9941KNuUAkKkmjM116LgXvyzLvwueV55RtJMVDZotfqhZD5ip4WUUvd-FjazuvhTT-anUQAGgtgvh1PDFbXKjGWSpEVKel1ii4cD0pbakpFBdBGtEXoujC9go-1bTIK5WHBajEVgU9YzdC-o_XUAejEY-ld_9j_AGenHwfqOPh-GgLnobE9PVqtG3oLBfXbofoy9K8j7X0D0DI7CM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lanthanide%E2%80%90doped+rare+earth+nanoparticles+for+near%E2%80%90infrared%E2%80%90II+imaging+and+cancer+therapy&rft.jtitle=BMEmat+%28Print%29&rft.au=Zhao%2C+Hongxia&rft.au=Xiao%2C+He&rft.au=Liu%2C+Ying&rft.au=Ju%2C+Huangxian&rft.date=2023-09-01&rft.issn=2751-7438&rft.eissn=2751-7446&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1002%2Fbmm2.12032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bmm2_12032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-7438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-7438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-7438&client=summon