Lanthanide‐doped rare earth nanoparticles for near‐infrared‐II imaging and cancer therapy
The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applicat...
Saved in:
Published in | BMEmat (Print) Vol. 1; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Jinan
John Wiley & Sons, Inc
01.09.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed.
Lanthanide‐doped nanoparticles (LDNPs) offer various emissions in the NIR‐II region by co‐doping different rare earth metal ions. This review summarizes different sensitizer ions for LDNPs with NIR‐II emissions, and their applications in “always on” in vivo imaging, activatable in vivo imaging, and NIR‐II imaging‐guided therapy. NIR‐II imaging guided theranostics provides controllable responsiveness, high resolution, improved penetration depth and low background interference. |
---|---|
AbstractList | The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed.
Lanthanide‐doped nanoparticles (LDNPs) offer various emissions in the NIR‐II region by co‐doping different rare earth metal ions. This review summarizes different sensitizer ions for LDNPs with NIR‐II emissions, and their applications in “always on” in vivo imaging, activatable in vivo imaging, and NIR‐II imaging‐guided therapy. NIR‐II imaging guided theranostics provides controllable responsiveness, high resolution, improved penetration depth and low background interference. Abstract The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed. The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed. The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering; therefore, they provide high spatial resolution and acceptable tissue penetration depth. These advantages make them appropriate for in vivo applications, including bioimaging, NIR‐II triggered disease therapy, and even on‐site efficacy monitoring. Among the various developed NIR‐II fluorescence probes, lanthanide‐doped nanoparticles (LDNPs) exhibit high photo stability and narrow emission bandwidths with long photoluminescence lifetimes and low cytotoxicity; therefore, they have been widely studied in the biomedical field. This review summarizes the typical compositions and optical properties of recently developed NIR‐II emitting LDNPs. Their applications in in vivo NIR‐II bioimaging and cancer therapy are reviewed. The perspectives and challenges of NIR‐II LDNPs are also discussed. |
Author | Liu, Ying Xiao, He Zhao, Hongxia Ju, Huangxian |
Author_xml | – sequence: 1 givenname: Hongxia surname: Zhao fullname: Zhao, Hongxia organization: Nanjing University – sequence: 2 givenname: He surname: Xiao fullname: Xiao, He organization: Nanjing University – sequence: 3 givenname: Ying orcidid: 0000-0001-5718-7804 surname: Liu fullname: Liu, Ying email: yingliu@nju.edu.cn organization: Nanjing University – sequence: 4 givenname: Huangxian orcidid: 0000-0002-6741-5302 surname: Ju fullname: Ju, Huangxian email: hxju@nju.edu.cn organization: Nanjing University |
BookMark | eNp9kc1uEzEUhS1UJErppk9giR1Siv9mxl5CBW2kVN20a-uOfZ04SuzBMxXKro_AM_IkOJ3CAiHkhY-uv3N1rPOWnKSckJALzi45Y-Jjv9-LSy6YFK_IqegavuiUak_-aKnfkPNx3LIK604K3Z4Su4I0bSBFjz-ffvg8oKcFClKEMm1ogpSHqqLb4UhDLjTVh0rGFI6Yr3K5pHEP65jWFJKnDpLDQqcNFhgO78jrALsRz1_uM_Lw9cv91c1idXe9vPq0WjjFGrFwWvjecQ9KcumDRw5t6L3hQfdOe69YCAj1aPDcOGCh77mTxrledC0yeUaW816fYWuHUhOVg80Q7fMgl7V9-YYVWnUIBsArobAxxmngkrVtY5rQqrbuej_vGkr-9ojjZLf5saQa30pmmOBGKlEpNlOu5HEsGKyLE0wxp6lA3FnO7LEVe2zFPrdSLR_-svwO-k-Yz_D3uMPDf0j7-fZWzJ5fiZai0Q |
CitedBy_id | crossref_primary_10_1021_acsami_4c17186 crossref_primary_10_1142_S1793545825300022 crossref_primary_10_1088_1748_605X_ada3d0 crossref_primary_10_1016_j_foodchem_2023_138100 crossref_primary_10_1021_acsnano_4c16280 crossref_primary_10_1039_D4CP03265A crossref_primary_10_1038_s41377_024_01539_6 crossref_primary_10_1002_adfm_202311857 crossref_primary_10_1021_acs_cgd_3c01140 crossref_primary_10_1002_tcr_202400171 crossref_primary_10_3389_fcell_2024_1514399 crossref_primary_10_1039_D4TB02207F crossref_primary_10_1002_smtd_202301309 |
Cites_doi | 10.1038/s41467-017-01050-0 10.1002/adom.201801417 10.1021/nn304373q 10.1016/j.snb.2017.04.160 10.1038/s41565-018-0221-0 10.1039/C8CS00234G 10.1016/j.biomaterials.2017.04.046 10.1002/ange.202108124 10.1039/D0SC04789A 10.1002/anie.202209592 10.1038/s41467-017-00917-6 10.1002/anie.201903536 10.1039/C5SC04229A 10.1016/j.nantod.2021.101120 10.1039/C8NR01139G 10.1002/ange.202015273 10.1021/jacs.0c07022 10.1002/ange.202106730 10.1021/acs.analchem.9b05599 10.1021/jacs.5b04509 10.1016/j.crci.2010.05.007 10.1021/acs.analchem.8b00603 10.1021/nn506107c 10.1007/s10854-021-06035-w 10.1002/smll.202205647 10.1016/j.jre.2017.07.009 10.1021/acs.accounts.5b00009 10.7150/thno.29817 10.1039/C6CS00719H 10.1002/ange.201901964 10.1007/s12274-014-0548-2 10.1021/acs.nanolett.1c04356 10.1021/acsnano.6b05949 10.1038/s41551-016-0010 10.7150/thno.31864 10.1039/C4CS00188E 10.1002/smll.201301716 10.1021/acsnano.1c09960 10.1021/acs.nanolett.9b00140 10.1039/C8CS00618K 10.1016/j.jre.2020.01.021 10.1039/C7TB00070G 10.1002/adom.201800690 10.1039/b518262j 10.1038/s41467-018-05113-8 10.1021/acsnano.0c00082 10.1002/adma.201604764 10.1002/adom.201701142 10.1016/j.isci.2020.100962 10.1021/acs.analchem.1c05253 10.1021/acsnano.0c08532 10.1021/acsnano.1c09635 10.1039/D0NR01098G 10.1021/nl504123r 10.1007/s12274-020-2661-8 10.1038/ncomms3199 10.1152/physrev.00029.2006 10.1002/ange.201802889 10.1002/anie.201407420 10.1021/nn2042362 10.1021/jacs.6b08973 10.1039/c1nr10466g 10.1002/anie.202212721 10.1016/j.biomaterials.2022.121873 10.1021/acs.nanolett.1c01962 10.1038/nmat4846 10.1038/s41563-021-01063-7 10.1021/nl025562q 10.1038/s41551-017-0056 10.1016/j.jre.2018.03.015 10.1002/adma.202001172 10.1016/j.nantod.2022.101439 10.1002/adma.201804982 10.1002/adma.201401825 10.1016/j.ccr.2018.11.014 10.1038/s41467-019-10056-9 10.1002/ange.201507473 10.1038/nm.4087 10.1021/acsnano.8b01893 10.1038/s41467-018-05798-x 10.1039/C5TB02023A 10.1021/acs.nanolett.8b05148 10.1016/j.optmat.2011.01.006 10.1002/adfm.202009942 10.1002/adma.202102950 10.1021/acsnano.8b05431 10.1039/C8SC00927A 10.1002/adom.201900917 10.1038/s41587-019-0262-4 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shandong University. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shandong University. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/bmm2.12032 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2751-7446 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2847ea9aad424e599c8a13066595f646 10_1002_bmm2_12032 BMM212032 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20200010 – fundername: National Natural Science Foundation of China funderid: 21890741; 21974064; 22022405 – fundername: State Key Laboratory of Analytical Chemistry for Life Sciences funderid: 5431ZZXM2204; 5431ZZXM2307 |
GroupedDBID | 0R~ 24P ACCMX AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN BENPR CCPQU EBS GROUPED_DOAJ PIMPY AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4052-c82dbc1da4313dfde1a6fbd91f8bc8dd40ffeaeae8ad19ca0fbb1c39ccb276e03 |
IEDL.DBID | BENPR |
ISSN | 2751-7438 |
IngestDate | Wed Aug 27 01:19:11 EDT 2025 Mon Jun 30 17:14:20 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Tue Jul 01 04:32:45 EDT 2025 Wed Jan 22 17:16:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4052-c82dbc1da4313dfde1a6fbd91f8bc8dd40ffeaeae8ad19ca0fbb1c39ccb276e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5718-7804 0000-0002-6741-5302 |
OpenAccessLink | https://www.proquest.com/docview/3090219342?pq-origsite=%requestingapplication% |
PQID | 3090219342 |
PQPubID | 6860420 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2847ea9aad424e599c8a13066595f646 proquest_journals_3090219342 crossref_citationtrail_10_1002_bmm2_12032 crossref_primary_10_1002_bmm2_12032 wiley_primary_10_1002_bmm2_12032_BMM212032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | Jinan |
PublicationPlace_xml | – name: Jinan |
PublicationTitle | BMEmat (Print) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 5 2017; 8 2017; 1 2021; 21 2013; 4 2021; 20 2010; 13 2022; 291 2019; 10 2019; 13 2017; 46 2019; 58 2014; 26 2019; 19 2020; 14 2020; 13 2020; 12 2022; 22 2013; 7 2018; 47 2018; 130 2018; 6 2021; 38 2015; 48 2018; 9 2021; 32 2021; 31 2021; 33 2015; 137 2020; 92 2015; 44 2018; 30 2014; 8 2018; 36 2014; 10 2014; 53 2019; 7 2015; 15 2019; 9 2015; 127 2020; 142 2022; 94 2006; 16 2019; 37 2020; 38 2002; 2 2011; 33 2017; 250 2017; 29 2022; 43 2020; 32 2011; 3 2017; 134 2015; 9 2019; 381 2016; 4 2016; 7 2021; 15 2021; 12 2023 2022 2022; 61 2017; 16 2017; 11 2019; 48 2018; 90 2016; 138 2020; 23 2021; 133 2012; 6 2018; 12 2007; 87 2018; 10 2019; 133 2022; 16 2022; 18 2018; 13 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 Zhao M. Y. (e_1_2_7_17_1) 2022 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Chen Y. (e_1_2_7_92_1) 2023 |
References_xml | – volume: 8 start-page: 737 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 636 year: 2014 publication-title: Nano Res. – volume: 291 year: 2022 publication-title: Biomaterials – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 94 year: 2022 publication-title: Anal. Chem. – volume: 18 year: 2022 publication-title: Small – volume: 90 year: 2018 publication-title: Anal. Chem. – volume: 33 year: 2011 publication-title: Opt. Mater. – volume: 37 year: 2019 publication-title: Nat. Biotechnol. – volume: 134 start-page: 202 year: 2017 publication-title: Biomaterials – volume: 9 year: 2015 publication-title: ACS Nano – volume: 130 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 381 start-page: 104 year: 2019 publication-title: Coord. Chem. Rev. – volume: 22 start-page: 783 year: 2022 publication-title: Nano Lett. – volume: 43 year: 2022 publication-title: Nano Today – volume: 38 start-page: 451 year: 2020 publication-title: J. Rare Earths – volume: 4 year: 2013 publication-title: Nat. Commun. – volume: 87 start-page: 315 year: 2007 publication-title: Physiol. Rev. – volume: 16 year: 2006 publication-title: J. Mater. Chem. – volume: 133 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 537 year: 2017 publication-title: Nat. Mater. – volume: 92 year: 2020 publication-title: Anal. Chem. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 5 year: 2017 publication-title: J. Mater. Chem. B – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 46 year: 2017 publication-title: Chem. Soc. Rev. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 250 start-page: 147 year: 2017 publication-title: Sens. Actuators, B – volume: 48 year: 2015 publication-title: Acc. Chem. Res. – volume: 22 start-page: 547 year: 2016 publication-title: Nat. Med. – volume: 13 start-page: 941 year: 2018 publication-title: Nat. Nanotechnol. – volume: 23 year: 2020 publication-title: iScience – volume: 10 year: 2019 publication-title: Nat. Commun. – year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2012 publication-title: ACS Nano – volume: 48 year: 2019 publication-title: Chem. Soc. Rev. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 9 start-page: 369 year: 2019 publication-title: Theranostics – volume: 32 year: 2021 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 9 year: 2019 publication-title: Theranostics – volume: 36 start-page: 113 year: 2018 publication-title: J. Rare Earths – volume: 7 year: 2013 publication-title: ACS Nano – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 44 year: 2015 publication-title: Chem. Soc. Rev. – volume: 127 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 87 year: 2016 publication-title: J. Mater. Chem. B – volume: 36 start-page: 939 year: 2018 publication-title: J. Rare Earths – volume: 16 year: 2022 publication-title: ACS Nano – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 10 year: 2018 publication-title: Nanoscale – volume: 1 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2018 publication-title: Chem. Sci. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 13 start-page: 248 year: 2019 publication-title: ACS Nano – volume: 10 year: 2014 publication-title: Small – volume: 12 year: 2021 publication-title: Chem. Sci. – year: 2022 publication-title: Adv. Opt. Mater. – volume: 2 start-page: 733 year: 2002 publication-title: Nano Lett. – volume: 8 start-page: 902 year: 2017 publication-title: Nat. Commun. – volume: 38 year: 2021 publication-title: Nano Today – volume: 47 year: 2018 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 13 year: 2020 publication-title: Nano Res. – volume: 19 year: 2019 publication-title: Nano Lett. – volume: 21 year: 2021 publication-title: Nano Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 96 year: 2015 publication-title: Nano Lett. – volume: 26 year: 2014 publication-title: Adv. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 358 year: 2017 publication-title: ACS Nano – volume: 13 start-page: 668 year: 2010 publication-title: C. R. Chim. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2016 publication-title: Chem. Sci. – volume: 20 year: 2021 publication-title: Nat. Mater. – volume: 3 year: 2011 publication-title: Nanoscale – ident: e_1_2_7_2_1 doi: 10.1038/s41467-017-01050-0 – ident: e_1_2_7_19_1 doi: 10.1002/adom.201801417 – ident: e_1_2_7_39_1 doi: 10.1021/nn304373q – ident: e_1_2_7_42_1 doi: 10.1016/j.snb.2017.04.160 – ident: e_1_2_7_55_1 doi: 10.1038/s41565-018-0221-0 – ident: e_1_2_7_10_1 doi: 10.1039/C8CS00234G – ident: e_1_2_7_31_1 doi: 10.1016/j.biomaterials.2017.04.046 – ident: e_1_2_7_60_1 doi: 10.1002/ange.202108124 – ident: e_1_2_7_12_1 doi: 10.1039/D0SC04789A – ident: e_1_2_7_76_1 doi: 10.1002/anie.202209592 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-017-00917-6 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201903536 – ident: e_1_2_7_6_1 doi: 10.1039/C5SC04229A – ident: e_1_2_7_51_1 doi: 10.1016/j.nantod.2021.101120 – ident: e_1_2_7_32_1 doi: 10.1039/C8NR01139G – ident: e_1_2_7_59_1 doi: 10.1002/ange.202015273 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.0c07022 – ident: e_1_2_7_63_1 doi: 10.1002/ange.202106730 – ident: e_1_2_7_70_1 doi: 10.1021/acs.analchem.9b05599 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.5b04509 – ident: e_1_2_7_15_1 doi: 10.1016/j.crci.2010.05.007 – ident: e_1_2_7_37_1 doi: 10.1021/acs.analchem.8b00603 – ident: e_1_2_7_47_1 doi: 10.1021/nn506107c – ident: e_1_2_7_48_1 doi: 10.1007/s10854-021-06035-w – ident: e_1_2_7_91_1 doi: 10.1002/smll.202205647 – ident: e_1_2_7_50_1 doi: 10.1016/j.jre.2017.07.009 – ident: e_1_2_7_61_1 doi: 10.1021/acs.accounts.5b00009 – ident: e_1_2_7_87_1 doi: 10.7150/thno.29817 – ident: e_1_2_7_5_1 doi: 10.1039/C6CS00719H – ident: e_1_2_7_58_1 doi: 10.1002/ange.201901964 – ident: e_1_2_7_46_1 doi: 10.1007/s12274-014-0548-2 – ident: e_1_2_7_64_1 doi: 10.1021/acs.nanolett.1c04356 – ident: e_1_2_7_4_1 doi: 10.1021/acsnano.6b05949 – ident: e_1_2_7_9_1 doi: 10.1038/s41551-016-0010 – ident: e_1_2_7_86_1 doi: 10.7150/thno.31864 – ident: e_1_2_7_8_1 doi: 10.1039/C4CS00188E – ident: e_1_2_7_41_1 doi: 10.1002/smll.201301716 – ident: e_1_2_7_67_1 doi: 10.1021/acsnano.1c09960 – ident: e_1_2_7_49_1 doi: 10.1021/acs.nanolett.9b00140 – ident: e_1_2_7_85_1 doi: 10.1039/C8CS00618K – year: 2023 ident: e_1_2_7_92_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_14_1 doi: 10.1016/j.jre.2020.01.021 – ident: e_1_2_7_30_1 doi: 10.1039/C7TB00070G – ident: e_1_2_7_33_1 doi: 10.1002/adom.201800690 – ident: e_1_2_7_40_1 doi: 10.1039/b518262j – ident: e_1_2_7_77_1 doi: 10.1038/s41467-018-05113-8 – ident: e_1_2_7_90_1 doi: 10.1021/acsnano.0c00082 – ident: e_1_2_7_69_1 doi: 10.1002/adma.201604764 – ident: e_1_2_7_34_1 doi: 10.1002/adom.201701142 – ident: e_1_2_7_74_1 doi: 10.1016/j.isci.2020.100962 – ident: e_1_2_7_56_1 doi: 10.1021/acs.analchem.1c05253 – ident: e_1_2_7_78_1 doi: 10.1021/acsnano.0c08532 – ident: e_1_2_7_80_1 doi: 10.1021/acsnano.1c09635 – ident: e_1_2_7_24_1 doi: 10.1039/D0NR01098G – ident: e_1_2_7_29_1 doi: 10.1021/nl504123r – ident: e_1_2_7_16_1 doi: 10.1007/s12274-020-2661-8 – ident: e_1_2_7_28_1 doi: 10.1038/ncomms3199 – ident: e_1_2_7_71_1 doi: 10.1152/physrev.00029.2006 – ident: e_1_2_7_18_1 doi: 10.1002/ange.201802889 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201407420 – ident: e_1_2_7_45_1 doi: 10.1021/nn2042362 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.6b08973 – ident: e_1_2_7_25_1 doi: 10.1039/c1nr10466g – ident: e_1_2_7_66_1 doi: 10.1002/anie.202212721 – ident: e_1_2_7_79_1 doi: 10.1016/j.biomaterials.2022.121873 – ident: e_1_2_7_65_1 doi: 10.1021/acs.nanolett.1c01962 – ident: e_1_2_7_3_1 doi: 10.1038/nmat4846 – ident: e_1_2_7_54_1 doi: 10.1038/s41563-021-01063-7 – ident: e_1_2_7_22_1 doi: 10.1021/nl025562q – ident: e_1_2_7_57_1 doi: 10.1038/s41551-017-0056 – ident: e_1_2_7_38_1 doi: 10.1016/j.jre.2018.03.015 – ident: e_1_2_7_72_1 doi: 10.1002/adma.202001172 – ident: e_1_2_7_81_1 doi: 10.1016/j.nantod.2022.101439 – ident: e_1_2_7_82_1 doi: 10.1002/adma.201804982 – ident: e_1_2_7_84_1 doi: 10.1002/adma.201401825 – ident: e_1_2_7_20_1 doi: 10.1016/j.ccr.2018.11.014 – year: 2022 ident: e_1_2_7_17_1 publication-title: Adv. Opt. Mater. – ident: e_1_2_7_83_1 doi: 10.1038/s41467-019-10056-9 – ident: e_1_2_7_11_1 doi: 10.1002/ange.201507473 – ident: e_1_2_7_73_1 doi: 10.1038/nm.4087 – ident: e_1_2_7_88_1 doi: 10.1021/acsnano.8b01893 – ident: e_1_2_7_89_1 doi: 10.1038/s41467-018-05798-x – ident: e_1_2_7_43_1 doi: 10.1039/C5TB02023A – ident: e_1_2_7_35_1 doi: 10.1021/acs.nanolett.8b05148 – ident: e_1_2_7_44_1 doi: 10.1016/j.optmat.2011.01.006 – ident: e_1_2_7_75_1 doi: 10.1002/adfm.202009942 – ident: e_1_2_7_53_1 doi: 10.1002/adma.202102950 – ident: e_1_2_7_52_1 doi: 10.1021/acsnano.8b05431 – ident: e_1_2_7_62_1 doi: 10.1039/C8SC00927A – ident: e_1_2_7_68_1 doi: 10.1002/adom.201900917 – ident: e_1_2_7_27_1 doi: 10.1038/s41587-019-0262-4 |
SSID | ssj0002873286 |
Score | 2.376588 |
SecondaryResourceType | review_article |
Snippet | The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering;... The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon scattering;... Abstract The optical nanoprobes with emissions in the second near‐infrared window (NIR‐II, 1000–1700 nm) show low tissue autofluorescence and photon... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aqueous solutions bioimaging cancer theranostics Cancer therapies Energy Information storage lanthanide‐doped nanoparticles Light Medical diagnosis Nanoparticles NIR‐II fluorescence Polyethylene glycol Radiation second near‐infrared window Tomography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skx7ET6xWCehFYe1uNt1ujipKK9aTQm8hySS0Yrel1oM3f4K_0V_iJLuWFkQvspewO7Bh3mzmZZm8IeQEMbaKC4Orn9YRZy6JRMtBJMDGKbB2Zow_jdy7zzqP_Lbf6i-0-vI1YaU8cOm4pl8-rRJKAWfctoQwucJ1N_M6eC7jQWwbc97CZuop_DLyIjTZXI-UNfVoxM4T3y98KQMFof4ldrnIUUOSudkg6xU7pBflrDbJii22yNqCZuA2kXfoi4EqhmA_3z9gPLFAccNrKYbsbEALVeA2uKp2o8hIaYEP0BIjyZsBDrtdOhyF7kRUFUCNB35Ky5NYbzvk8eb64aoTVV0SIoNki0UmZ6BNAgqpQAoObKIyp0EkLtcmB-Cxc1bhlStIhFGx0zoxqUAQEApEZJfUinFh9wiNLebztraxgpQDIHXE3ZjKHROctUWe1snpt-ekqSTEfSeLZ1mKHzPpvSyDl-vkeG47KYUzfrS69ADMLbzYdbiBISArZ8m_QqBOGt_wyeoLfJGpLzhFdsrxHWcB0l-mIS97PRZG-_8xoQOy6rvSl6VoDVKbTV_tIXKXmT4KYfoFwyzuxg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-COhFodqm2W4DXlQUV1zxoOAtJJlEBbe77K4Hb_4Ef6O_xEna7SqIIL2Edkrb-ZLOl5D5hpA9xNgqLgz-_bSOOHNJJJoOIgE2ToG1MmN8NnLnJru851cPzYcpcjzOhSn1IeoFNz8ywv_aD3Clh0cT0VDd7bLDxBcAnyazPrfWK-czfluvsOBcIGWh1CNrNZMIQ2Ve65Oyo8ntPyJSEO7_wTa_c9YQdC4WyULFFulJCe8SmbLFMpn_piG4QuQ1-uZJFc9gP98_oNe3QPGrLMUuPHqihSpwWlztfqPIUGmBF9ASe5Y3A2y22_S5G6oVUVUANb4jDGiZmfW2Su4vzu_OLqOqakJkkHyxyOQMtElAITVIwYFNVOY0iMTl2uQAPHbOKjxyBYkwKnZaJyYVCApCgwitkZmiV9h1QmOL8b2lbawg5QBIJXF2pnLHBGctkacNsj_2nDSVpLivbPEiSzFkJr2XZfByg-zWtv1SSONXq1MPQG3hxa_Did7gUVbOkj6iWiWUAs64bQphcoWhOPPSiC7jWYNsjeGT1YgcytRvQEW2yvEZBwHSP15DnnY6LLQ2_mO8SeZ8NfpyC9oWmRkNXu02cpaR3gld8wvx5umF priority: 102 providerName: Wiley-Blackwell |
Title | Lanthanide‐doped rare earth nanoparticles for near‐infrared‐II imaging and cancer therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbmm2.12032 https://www.proquest.com/docview/3090219342 https://doaj.org/article/2847ea9aad424e599c8a13066595f646 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fSxwxEB-qvrQPxf6j19oj0L60sHU3m9tLnsQrioonUir4FpJMokJv73peH_rWj-Bn9JM4yeauCkX2JWSHZZmZzfwmO_kNwCeysTdCOVr9rC0ED1WhBgELhb6skQ8b5-Jp5PFJc3Amjs4H53nD7TqXVS7XxLRQ49TFPfLtOhYQEtoQfGf2q4hdo-Lf1dxCYw02aAmWlHxtjPZOTr-vdlloruap3SMfDqqCwqVccZTybTuZ8K9V7CH-ICol8v4HiPM-bk2BZ38TnmfEyHY7E7-AJ759Cc_u8Qi-An1M-rk07RX62783OJ15ZJQEe0ZuvLhkrWkpNc4VcIxQKmvpBkmSd0UxpOHhIbuapI5FzLTIXHSGOetOZ_15DWf7ez--HRS5c0LhCIDxwkmO1lVoCB7UGNBXpgkWVRWkdRJRlCF4Q5c0WClnymBt5WpFhiHzkJXewHo7bf1bYKWnGD-0vjRYC0SCk5ShGRm4EnyoZN2Dz0vNaZdpxWN3i5-6I0TmOmpZJy334ONKdtaRafxXahQNsJKIBNhpYjq_0FlZOkZVb5QxKLjwA6WcNBSOm0iPGBrR9GBraT6dv8pr_c-HevAlmfSR19Cj8Zin0bvHn_UensYe9F3h2RasL-a__QdCKgvbhzUuTvvZKfsp378DdM3sKA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7gF4QPwVhQGWgAeQwhLHTeMHhChsallbIbRJezO2z2aTaFq6IrQ3PgKfhA_FJ-HsJGWT0N6mvFjJyXLuLne_c853AM9Ixk4Lacn6GZMI7rNE9jwmEl2aI-8X1obTyJNpMTwQHw57hxvwuz0LE9IqW5sYDTXObdgj385DAiGhDcHfLL4loWtU-LvattCo1WLPnf6gkO3k9eg9yfc557s7---GSdNVILEETnhiS47GZqjJdebo0WW68AZl5ktjS0SReu80XaXGTFqdemMym0taNC2d3oDmvQKbIqdQpgObg53px0_rXR2KP3Ie20vyfi9LyD2X65qofNvMZvxVFnqWn_OCsVnAOYR7FidHR7d7E240CJW9rVXqFmy46jZcP1O38A6oMcnjSFfH6P78_IXzhUNGQbdjxJ_VEat0RaF4k3HHCBWzih4QJWlzIEMajkbseBY7JDFdIbNB-ZasPg12ehcOLoWn96BTzSt3H1jqCFP0jUs15gKR4CtFhLr0XArel2XehRct55RtypiHbhpfVV2AmavAZRW53IWna9pFXbzjv1SDIIA1RSi4HW_Ml19UwywVvLjTUmsUXLielLbU5P6LUI7RF6LowlYrPtVYgRP1T2e78DKK9IJlqMFkwuPowcVzPYGrw_3JWI1H072HcI0T6qqT3rags1p-d48IJa3M40Y1GXy-7K_hL1acK5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Bb9MwFH4aRUJwQDBAlG1gCS5MCkscN40lLhtQrWytdtik3Szbz94q0bTqusNu_IT9xv0Snp00WyWEhHKxkhcleZ_t99mxvwfwiTB2WkhLvZ8xieA-S2TPYyLRpTnyfmFt2I08GheHZ-Lnee98A76u9sLU-hDthFtoGbG_Dg18jn7vXjTUTKf8SxYSgD-Cx_FvX9B1FiftDAuNBXIeUz3yfi9LKFSWrT4p37u_fS0iReH-Nbb5kLPGoDN4Ac8btsj2a3hfwoarNuHZAw3BV6COyTeXupqgu_t9i7O5Q0Zf5RhV4eUlq3RFw-Jm9RsjhsoqukCWVLOCGVJxOGSTacxWxHSFzIaKsGD1zqyb13A2-HH67TBpsiYklsgXT2zJ0dgMNVGDHD26TBfeoMx8aWyJKFLvnaaj1JhJq1NvTGZzSaAQNITQG-hUs8q9BZY6iu9941KNuUAkKkmjM116LgXvyzLvwueV55RtJMVDZotfqhZD5ip4WUUvd-FjazuvhTT-anUQAGgtgvh1PDFbXKjGWSpEVKel1ii4cD0pbakpFBdBGtEXoujC9go-1bTIK5WHBajEVgU9YzdC-o_XUAejEY-ld_9j_AGenHwfqOPh-GgLnobE9PVqtG3oLBfXbofoy9K8j7X0D0DI7CM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lanthanide%E2%80%90doped+rare+earth+nanoparticles+for+near%E2%80%90infrared%E2%80%90II+imaging+and+cancer+therapy&rft.jtitle=BMEmat+%28Print%29&rft.au=Zhao%2C+Hongxia&rft.au=Xiao%2C+He&rft.au=Liu%2C+Ying&rft.au=Ju%2C+Huangxian&rft.date=2023-09-01&rft.issn=2751-7438&rft.eissn=2751-7446&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1002%2Fbmm2.12032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bmm2_12032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-7438&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-7438&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-7438&client=summon |