THI3 contributes to isoamyl alcohol biosynthesis through thiamine diphosphate homeostasis

Isoamyl alcohol is a precursor of isoamyl acetate, an aromatic compound that imparts the ginjo aroma to sake. The isoamyl alcohol biosynthesis pathway in yeasts involves the genes PDC1, PDC5, PDC6, ARO10, and THI3 encoding enzymes that decarboxylate α-ketoisocaproic acid to isovaleraldehyde. Among t...

Full description

Saved in:
Bibliographic Details
Published inJournal of bioscience and bioengineering Vol. 137; no. 2; pp. 108 - 114
Main Authors Kobashi, Yuki, Yoshizaki, Yumiko, Okutsu, Kayu, Futagami, Taiki, Tamaki, Hisanori, Takamine, Kazunori
Format Journal Article
LanguageEnglish
Published Japan Elsevier B.V 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Isoamyl alcohol is a precursor of isoamyl acetate, an aromatic compound that imparts the ginjo aroma to sake. The isoamyl alcohol biosynthesis pathway in yeasts involves the genes PDC1, PDC5, PDC6, ARO10, and THI3 encoding enzymes that decarboxylate α-ketoisocaproic acid to isovaleraldehyde. Among these genes, THI3 is the main gene involved in isoamyl alcohol biosynthesis. Decreased production of isoamyl alcohol has been reported in yeast strains with disrupted THI3 (Δthi3). However, it has also been reported that high THI3 expression did not enhance decarboxylase activity. Therefore, the involvement of THI3 in isoamyl alcohol biosynthesis remains unclear. In this study, we investigated the role of THI3 in isoamyl alcohol biosynthesis. While reproducing previous reports of reduced isoamyl alcohol production by the Δthi3 strain, we observed that the decrease in isoamyl alcohol production occurred only at low yeast nitrogen base concentrations in the medium. Upon investigating individual yeast nitrogen base components, we found that the isoamyl alcohol production by the Δthi3 strain reduced when thiamine concentrations in the medium were low. Under low-thiamine conditions, both thiamine and thiamine diphosphate (TPP) levels decreased in Δthi3 cells. We also found that the decarboxylase activity of cell-free extracts of the Δthi3 strain cultured in a low-thiamine medium was lower than that of the wild-type strain, but was restored to the level of the wild-type strain when TPP was added. These results indicate that the loss of THI3 lowers the supply of TPP, a cofactor for decarboxylases, resulting in decreased isoamyl alcohol production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2023.11.006