Effects of the charge-dipole interaction on the coagulation of fractal aggregates

A numerical model with broad applications to complex (dusty) plasmas is presented. The self-consistent N-body code allows simulation of the coagulation of fractal aggregates, including the charge-dipole interaction of the clusters due to the spatial arrangement of charge on the aggregate. It is show...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on plasma science Vol. 32; no. 2; pp. 586 - 593
Main Authors Matthews, L.S., Hyde, T.W.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A numerical model with broad applications to complex (dusty) plasmas is presented. The self-consistent N-body code allows simulation of the coagulation of fractal aggregates, including the charge-dipole interaction of the clusters due to the spatial arrangement of charge on the aggregate. It is shown that not only does a population of oppositely charged particles increase the coagulation rate, the inclusion of the charge-dipole interaction of the aggregates as well as the electric dipole potential of the dust ensemble decreases the gelation time by a factor of up to 20. It is further shown that these interactions can also stimulate the onset of gelation, or "runaway growth," even in a population of particles charged to a monopotential where previously it was believed that like-charged grains would inhibit coagulation. Gelation is observed to occur due to the formation of high-mass aggregates with fractal dimensions greater than two, which act as seeds for runaway growth.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2004.826107