The effects of acoustic streaming on thermal convection in an enclosure with differentially heated horizontal walls

The effects of classical and irregular streaming motion on convective heat transfer in air-filled shallow enclosures carrying a standing sound wave are investigated. The fluid motion is driven by the periodic vibration of the enclosure left wall. The vertical walls of the enclosure are adiabatic whi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 53; no. 23; pp. 5289 - 5297
Main Authors Aktas, Murat K., Ozgumus, Turkuler
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of classical and irregular streaming motion on convective heat transfer in air-filled shallow enclosures carrying a standing sound wave are investigated. The fluid motion is driven by the periodic vibration of the enclosure left wall. The vertical walls of the enclosure are adiabatic while the horizontal walls are heated differentially. The fully compressible form of the Navier–Stokes equations are considered to compute the oscillatory and mean flow fields. A control-volume method based, explicit time-marching Flux-Corrected Transport (FCT) Algorithm is used to simulate the transport phenomena in the enclosure. The simulation results of a test case for an unheated enclosure are compared with the existing literature for code validation. Transverse temperature gradient strongly affects the acoustic streaming structures and velocities. The streaming motion significantly enhances overall heat transfer from the bottom wall compared to pure conduction. Enhancement is more pronounced in the presence of irregular streaming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2010.07.028