Offline State-of-Health Estimation for High-Power Lithium-Ion Batteries Using Three-Point Impedance Extraction Method

This paper presents an offline state-of-health (SoH) estimation based on charge transfer resistance for high-power lithium-ion (Li-ion) batteries, such as lithium iron phosphate (LFP) batteries. As shown in the experimental results, the charge transfer resistance has a great aging change with batter...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 66; no. 3; pp. 2019 - 2032
Main Authors Yuan, Hsiang-Fu, Dung, Lan-Rong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents an offline state-of-health (SoH) estimation based on charge transfer resistance for high-power lithium-ion (Li-ion) batteries, such as lithium iron phosphate (LFP) batteries. As shown in the experimental results, the charge transfer resistance has a great aging change with battery degradation and good abilities against state-of-charge (SoC) drift and external resistance variation in the impedance parameter set of a single-time-constant equivalent circuit model (ECM), including ohmic resistance, charge transfer resistance, double-layer capacitance, and time constant, for SoH estimation. A fast and efficient three-point (TP) impedance extraction method is also proposed in this paper for accurately extracting the charge transfer resistance in offline SoH estimation. The results of long-term cycling test demonstrate that the TP impedance extraction method can successfully indicate the SoH of LFP batteries with low estimation error of 6.1%.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2016.2572163