Enhanced hardness in sputtered Zr–Ni–N films

Recently, it was found that the reactive magnetron sputtering of TiN films with the addition of small (≤ 10 at.%) amount of Fe makes it possible to change the preferred crystallographic orientation of grains in the film when the partial pressure of nitrogen p N 2 in the sputtering gas is continuousl...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 200; no. 22; pp. 6293 - 6297
Main Authors Šůna, J., Musil, J., Ondok, V., Han, J.G.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Lausanne Elsevier B.V 20.06.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recently, it was found that the reactive magnetron sputtering of TiN films with the addition of small (≤ 10 at.%) amount of Fe makes it possible to change the preferred crystallographic orientation of grains in the film when the partial pressure of nitrogen p N 2 in the sputtering gas is continuously increased. Between the films with different preferred crystallographic orientations there is a transition region (TR). The films produced inside TR are characterized by an X-ray amorphous structure. In spite of the fact that the films produced inside TR and outside of it strongly differ in their structure, both kinds of films exhibit an enhanced hardness [J. Musil, H. Polakova, J. Suna, J. Vlcek, Surf. Coat. Technol. 177–178 (2004) 289]. It was found that the enhanced hardness arises in two cases: (1) in the materials composed of a mixture of small grains of different crystallographic orientations, i.e. in the films produced inside TR, and (2) in the materials composed of nanocolumns perpendicular to the film/substrate interface, i.e. in the films produced outside TR. These findings are in an agreement with a new concept of nanocomposite phases with enhanced hardness based on the size of grains and the shape of crystallites [J. Musil, in: A. Cavaleiro, J.T.M. De Hosson (Eds.), Nanostructured Hard Coatings, Kluwer Academic/Plenum Publishers, New York, 2005, Chapter 10]. A development of mechanical properties of the Zr–Ni–N films with increasing p N 2 is also discussed in detail.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2005.11.042