Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE

We report that the bacterial transposon Tn7 selects targets by recognizing features associated with DNA replication using the transposon-encoded DNA-binding protein TnsE. We show that Tn7 transposition directed by TnsE occurs in one orientation with respect to chromosomal DNA replication, indicating...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 15; no. 6; pp. 737 - 747
Main Authors Peters, J E, Craig, N L
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 15.03.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report that the bacterial transposon Tn7 selects targets by recognizing features associated with DNA replication using the transposon-encoded DNA-binding protein TnsE. We show that Tn7 transposition directed by TnsE occurs in one orientation with respect to chromosomal DNA replication, indicating that a structure or complex involved in DNA replication is likely to be a critical determinant of TnsE insertion. We find that mutant TnsE proteins that allow higher levels of transposition also bind DNA better than the wild-type protein. The increased binding affinity displayed by the TnsE high-activity mutants indicates that DNA binding is relevant to transposition activity and suggests that TnsE interacts directly with target DNAs. In vitro, TnsE interacts preferentially with certain DNA structures, indicating a mechanism for the TnsE-mediated orientation and insertion preference. The pattern of TnsE-mediated insertion events around the Escherichia coli chromosome provides insight into how DNA replication forks proceed in vivo.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.870201