Multi-scale features for heartbeat classification using directed acyclic graph CNN

A new architecture of deep neural networks, directed acyclic graph convolutional neural networks (DAG-CNNs), is used to classify heartbeats from electrocardiogram (ECG) signals into different subject-based classes. DAG-CNNs not only fuse the feature extraction and classification stages of the ECG cl...

Full description

Saved in:
Bibliographic Details
Published inApplied artificial intelligence Vol. 32; no. 7-8; pp. 613 - 628
Main Authors Golrizkhatami, Zahra, Taheri, Shahram, Acan, Adnan
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 14.09.2018
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new architecture of deep neural networks, directed acyclic graph convolutional neural networks (DAG-CNNs), is used to classify heartbeats from electrocardiogram (ECG) signals into different subject-based classes. DAG-CNNs not only fuse the feature extraction and classification stages of the ECG classification into a single automated learning procedure, but also utilized multi-scale features and perform score-level fusion of multiple classifiers automatically. Therefore, DAG-CNN negates the necessity to extract hand-crafted features. In most of the current approaches, only the high level features which extracted by the last layer of CNN are used. Instead of performing feature level fusion manually and feeding the results into a classifier, the proposed multi-scale system can automatically learn different level of features, combine them and predict the output label. The results over the MIT-BIH arrhythmia benchmarks database demonstrate that the proposed system achieves a superior classification performance compared to most of the state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0883-9514
1087-6545
DOI:10.1080/08839514.2018.1501910