An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ cha...
Saved in:
Published in | PLoS computational biology Vol. 11; no. 5; p. e1004253 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: DK HM FS RS. Performed the experiments: DK NB YH. Analyzed the data: DK NB YH OK. Wrote the paper: DK OK RS. Current address: Institute of Animal Physiology & Department of Biology, Universität Erlangen-Nürnberg, Erlangen, Germany Current address: Biozentrum, Universität Basel, Basel, Switzerland The authors have declared that no competing interests exist. |
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1004253 |