even-skipped acts as a pair-rule gene in germ band stages of Tribolium development
The pair-rule gene even-skipped (eve) is essential for insect segmentation, yet its function varies among insect clades. While loss of eve results in typical pair-rule phenotypes in Drosophila, knock-down of eve orthologs shows segmental, gap-like, or asegmental phenotypes in non-Drosophila insects....
Saved in:
Published in | Developmental biology Vol. 462; no. 1; pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The pair-rule gene even-skipped (eve) is essential for insect segmentation, yet its function varies among insect clades. While loss of eve results in typical pair-rule phenotypes in Drosophila, knock-down of eve orthologs shows segmental, gap-like, or asegmental phenotypes in non-Drosophila insects. In Tribolium, knock-down of the eve ortholog (Tc-eve) resulted in a graded phenotypic series ranging from strong to weak, the most informative of which was intermediate phenotypes. The strong knock-down embryos displayed asegmental phenotypes and severely disorganized germ bands which have prevented determination of Tc-eve function in later stages. In order to understand the segmentation function of Tc-eve during later germ band elongation stages, we analyzed intermediate Tc-eveRNAi embryos in which germ band elongation was less affected. Most intermediate Tc-eveRNAi germ bands displayed segmentation defects with a double segmental periodicity in the abdomen. In these intermediate embryos, Tc-engrailed (Tc-en) stripes were ectopically expanded into large bands with a double segmental periodicity, while the remaining Tc-en stripes between the expanded Tc-en stripes were absent or barely formed. The expanded Tc-en stripes seemed to be activated by primary Tc-eve stripes and Tc-paired, both of which failed to resolve into secondary segmental stripes. The absence of Tc-en stripes appeared to be a consequence of the absence of the secondary stripes of Tc-runt that were required for the activation of Tc-en stripes. These results suggest that Tc-eve functions as a pair-rule gene at least in the germ band stages of Tribolium development.
•Injection of eve dsRNA causes pair-rule-like defects in Tribolium germ bands.•Primary eve stripes form in knockdown embryos but fail to resolve into segmental stripes.•Abnormal eve stripes lead to an expansion of en stripes with a double segmental periodicity.•Secondary stripes of the pair rule gene run are not maintained in the germ bands of knockdown embryos.•Absence of run stripes leads to a reduced number of en stripes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1016/j.ydbio.2020.03.010 |