Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts

Twelve yeasts isolated from lakes of Northwestern Patagonia, Argentina, belonging to eight genera (Sporobolomyces, Sporidiobolus, Rhodotorula, Rhodosporidium, Cystofilobasidium, Cryptococcus, Torulaspora, and Candida) were analysed for their ability to produce photoprotective compounds. For this pur...

Full description

Saved in:
Bibliographic Details
Published inPhotochemical & photobiological sciences Vol. 3; no. 3; pp. 281 - 286
Main Authors Libkind, Diego, Pérez, Patricia, Sommaruga, Ruben, Diéguez, Maria del Carmen, Ferraro, Marcela, Brizzio, Silvia, Zagarese, Horacio, van Broock, María
Format Journal Article
LanguageEnglish
Published England 01.03.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Twelve yeasts isolated from lakes of Northwestern Patagonia, Argentina, belonging to eight genera (Sporobolomyces, Sporidiobolus, Rhodotorula, Rhodosporidium, Cystofilobasidium, Cryptococcus, Torulaspora, and Candida) were analysed for their ability to produce photoprotective compounds. For this purpose, three laboratory experiments were performed to study the effect of photosynthetically active radiation (PAR) and PAR in combination with UV radiation (PAR + UVR) on the production of carotenoids and mycosporines. The synthesis of carotenoid compounds was clearly stimulated in six out of nine red yeast strains tested upon exposure to PAR or PAR + UVR; however, the latter conditions produced a stronger response than PAR alone. The increase in carotenoids in the red strains under PAR + UVR irradiation showed a negative exponential relationship with their basal carotenoid content, suggesting that cells with higher constitutive levels of carotenoids are less responsive to induction by PAR + UVR. Three red yeasts, Rhodotorula minuta, Rh. pinicola, and Rhodotorula sp., and the colourless Cryptococcus laurentii produced a UV-absorbing compound when exposed to PAR or PAR + UVR. This compound showed an absorption maximum at 309-310 nm and was identified as mycosporine-glutaminol-glucoside (myc-glu-glu). In these strains, exposure to PAR or PAR + UVR resulted in elevated concentrations of both carotenoids and myc-glu-glu. This is the first report on the production of mycosporines by yeasts. All strains that developed under PAR + UVR were able to synthesise carotenoids either constitutively or in response to PAR exposure, and a few of them also produced myc-glu-glu when exposed to PAR. Collectively, our results suggest that the presence of carotenoids, either alone or in combination with mycosporines, are required for sustaining growth under exposure to PAR + UVR in the freshwater yeast strains studied.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1474-905X
1474-9092
DOI:10.1039/b310608j