Hydrolysis of inositol phospholipids induced by stimulation of the T cell antigen receptor complex in antigen-specific, murine helper T cell clones. Requirement for exogenous calcium

Two murine, keyhole limpet hemocyanin-specific, Th cell clones were studied for their ability to respond to antibody-mediated stimulation of the TCR complex or to Ag-pulsed accessory cells by hydrolyzing inositol phospholipids. Both clones were positive for the determinant expressed on the epsilon c...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 143; no. 2; pp. 587 - 595
Main Authors Bonvini, E, DeBell, KE, Kolber, MA, Hoffman, T, Hodes, RJ, Taplits, MS
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.07.1989
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two murine, keyhole limpet hemocyanin-specific, Th cell clones were studied for their ability to respond to antibody-mediated stimulation of the TCR complex or to Ag-pulsed accessory cells by hydrolyzing inositol phospholipids. Both clones were positive for the determinant expressed on the epsilon chain of CD3 that is recognized by the mAb, 145-2C11 (2C11 mAb); one clone also expressed the V beta 8 epitope of the alpha/beta chains of the TCR recognized by the F23.1 mAb. Treatment of these cells with 2C11 or F23.1 mAb adsorbed onto polystyrene beads induced a time-dependent accumulation of inositol phosphates (IP). Keyhole limpet hemocyanin-pulsed accessory cells which expressed the appropriate MHC phenotype also induced IP accumulation, whereas no response was induced by medium-treated or MHC congenic accessory cells. The hydrolysis of inositol phospholipids induced by TCR perturbation depended upon the presence of exogenous Ca2+; Mg2+ did not substitute for Ca2+. Treatment of cells with ionomycin at concentrations up to 30 microM was unable to induce hydrolysis of inositol phospholipids, indicating that entrance of Ca2+ was itself insufficient to generate IP. Stimulated IP generation was rapidly blocked upon addition of EGTA to the incubation medium. Reducing the level of exogenous Ca2+ decreased the production of inositol mono-, bis-, and trisphosphate isomers similarly, suggesting that extracellular Ca2+ was required for the initiation of the hydrolysis rather than affecting phospholipase C affinity for its substrates. We concluded that activation of inositol phospholipid hydrolysis by perturbation of the TCR complex in the Th cell clones under investigation displays a Ca2+-dependent component which is likely to be proximal to IP generation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.143.2.587