Strong temperature influence and indiscernible ventilation effect on dynamics of some semivolatile organic compounds in the indoor air of an office
[Display omitted] Many manmade organic air pollutants are semivolatile and primarily used and exposed indoors. It remains unclear how indoor environmental parameters affect indoor air dynamics of semivolatile organic compounds (SVOCs) in real-world indoor conditions, which directly relates to human...
Saved in:
Published in | Environment international Vol. 165; p. 107305 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Many manmade organic air pollutants are semivolatile and primarily used and exposed indoors. It remains unclear how indoor environmental parameters affect indoor air dynamics of semivolatile organic compounds (SVOCs) in real-world indoor conditions, which directly relates to human exposure. By making time-resolved SVOC measurements over multiple weeks in an office, we characterized the indoor air dynamics of six representative SVOCs which were mainly present in the gas phase and of indoor origins, and investigated the effects of the temperature and ventilation rate. The six species include di-isobutyl phthalate and di-n-butyl phthalate, as well as two n-alkanes and two siloxanes. Airborne concentrations of all six SVOCs responded strongly and quickly to changes in the indoor temperature. The temperature dependence of individual species can be well fitted in the form of the van’t Hoff equation, and explained 65–86% of the observed variation in the logarithm-transformed concentrations. In contrast, increasing the ventilation rate by a factor of 3–5 for hours at a constant temperature had no discernible influence on the SVOC concentrations. Further kinetic modeling analysis suggests that the observed fast temperature response and indiscernible ventilation effect are both associated with SVOC sorption onto indoor surfaces, which dramatically slows the response of SVOC concentration to changes in the ventilation rate and speeds up the response to changes in the temperature. These results highlight the importance of sorption reservoirs on regulating indoor SVOC dynamics and also have important implications for controlling and assessing indoor air exposure to SVOCs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0160-4120 1873-6750 |
DOI: | 10.1016/j.envint.2022.107305 |