The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites

5′-Fluorouracil (5-FU), used in the treatment of colon and breast cancers, is converted intracellularly to 5′-fluoro-2′-deoxyuridine (5-FUdR) by thymidine phosphorylase and is subsequently phosphorylated by thymidine kinase to 5′-fluoro-2′-dUMP (5-FdUMP). This active metabolite, along with the reduc...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer therapeutics Vol. 4; no. 5; pp. 855 - 863
Main Authors Pratt, Susan, Shepard, Robert L., Kandasamy, Ramani A., Johnston, Paul A., Perry, William, Dantzig, Anne H.
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research 01.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:5′-Fluorouracil (5-FU), used in the treatment of colon and breast cancers, is converted intracellularly to 5′-fluoro-2′-deoxyuridine (5-FUdR) by thymidine phosphorylase and is subsequently phosphorylated by thymidine kinase to 5′-fluoro-2′-dUMP (5-FdUMP). This active metabolite, along with the reduced folate cofactor, 5,10-methylenetetrahydrofolate, forms a stable inhibitory complex with thymidylate synthase that blocks cellular growth. The present study shows that the ATP-dependent multidrug resistance protein-5 (MRP5, ABCC5) confers resistance to 5-FU by transporting the monophosphate metabolites. MRP5- and vector-transfected human embryonic kidney (HEK) cells were employed in these studies. In 3-day cytotoxicity assays, MRP5-transfected cells were ∼9-fold resistant to 5-FU and 6-thioguanine. Studies with inside-out membrane vesicles prepared from transfected cells showed that MRP5 mediates ATP-dependent transport of 5 μmol/L [ 3 H]5-FdUMP, [ 3 H]5-FUMP, [ 3 H]dUMP, and not [ 3 H]5-FUdR, or [ 3 H]5-FU. The ATP-dependent transport of 5-FdUMP showed saturation with increasing concentrations and had a K m of 1.1 mmol/L and V max of 439 pmol/min/mg protein. Uptake of 250 μmol/L 5-FdUMP was inhibited by dUMP, cyclic nucleotide, cyclic guanosine 3′,5′-monophosphate, amphiphilic anions such as probenecid, MK571, the phosphodiesterase inhibitors, trequinsin, zaprinast, and sildenafil, and by the chloride channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoic acid and glybenclamide. Furthermore, the 5-FU drug sensitivity of HEK-MRP5 cells was partially modulated to that of the HEK-vector by the presence of 40 μmol/L 5-nitro-2-(3-phenylpropylamino)-benzoic acid but not by 2 mmol/L probenecid. Thus, MRP5 transports the monophosphorylated metabolite of this nucleoside and when MRP5 is overexpressed in colorectal and breast tumors, it may contribute to 5-FU drug resistance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-7163
1538-8514
DOI:10.1158/1535-7163.MCT-04-0291