IKKα and IKKβ Regulation of DNA Damage-Induced Cleavage of Huntingtin

Background Proteolysis of huntingtin (Htt) plays a key role in the pathogenesis of Huntington's disease (HD). However, the environmental cues and signaling pathways that regulate Htt proteolysis are poorly understood. One stimulus may be the DNA damage that accumulates in neurons over time, and...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 4; no. 6; p. e5768
Main Authors Khoshnan, Ali, Ko, Jan, Tescu, Simona, Brundin, Patrick, Patterson, Paul H.
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 02.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Proteolysis of huntingtin (Htt) plays a key role in the pathogenesis of Huntington's disease (HD). However, the environmental cues and signaling pathways that regulate Htt proteolysis are poorly understood. One stimulus may be the DNA damage that accumulates in neurons over time, and the subsequent activation of signaling pathways such as those regulated by IκB kinase (IKK), which can influence neurodegeneration in HD. Methodology/Principal Findings We asked whether DNA damage induces the proteolysis of Htt and if activation of IKK plays a role. We report that treatment of neurons with the DNA damaging agent etoposide or γ-irradiation promotes cleavage of wild type (WT) and mutant Htt, generating N-terminal fragments of 80–90 kDa. This event requires IKKβ and is suppressed by IKKα. Elevated levels of IKKα, or inhibition of IKKβ expression by a specific small hairpin RNA (shRNA) or its activity by sodium salicylate, prevents Htt proteolysis and increases neuronal resistance to DNA damage. Moreover, IKKβ phosphorylates the anti-apoptotic protein Bcl-xL, a modification known to reduce Bcl-xL levels, and activates caspases that can cleave Htt. When IKKβ expression is blocked, etoposide treatment does not decrease Bcl-xL and activation of caspases is diminished. Similar to silencing of IKKβ, increasing the level of Bcl-xL in neurons prevents etoposide-induced caspase activation and Htt proteolysis. Conclusions/Significance These results indicate that DNA damage triggers cleavage of Htt and identify IKKβ as a prominent regulator. Moreover, IKKβ-dependent reduction of Bcl-xL is important in this process. Thus, inhibition of IKKβ may promote neuronal survival in HD as well as other DNA damage-induced neurodegenerative disorders.
Bibliography:Conceived and designed the experiments: AK. Performed the experiments: AK ST. Analyzed the data: AK JK PHP. Contributed reagents/materials/analysis tools: PB. Wrote the paper: AK PHP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0005768