hERG agonists pose challenges to web-based machine learning methods for prediction of drug-hERG channel interaction

Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to f...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmacological and toxicological methods Vol. 123; p. 107293
Main Authors El Harchi, Aziza, Hancox, Jules C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to facilitate the throughput screening of drugs in development and optimise thus the prediction of hERG liabilities. The use of MLM relies on large libraries of training compounds for the quantitative structure-activity relationship (QSAR) modelling of hERG inhibition. The focus on inhibition omits potential effects of hERG channel agonist molecules and their associated QT shortening risk. It is instructive, therefore, to consider how known hERG agonists are handled by MLM. Here, two highly developed online computational tools for the prediction of hERG liability, Pred-hERG and HergSPred were probed for their ability to detect hERG activator drug molecules as hERG interactors. In total, 73 hERG blockers were tested with both computational tools giving overall good predictions for hERG blockers with reported IC50s below Pred-hERG and HergSPred cut-off threshold for hERG inhibition. However, for compounds with reported IC50s above this threshold such as disopyramide or sotalol discrepancies were observed. HergSPred identified all 20 hERG agonists selected as interacting with the hERG channel. Further studies are warranted to improve online MLM prediction of hERG related cardiotoxicity, by explicitly taking into account channel agonism as well as inhibition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1056-8719
1873-488X
DOI:10.1016/j.vascn.2023.107293