Deformable Image Registration Using a Cue-Aware Deep Regression Network
Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. Objective: We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 65; no. 9; pp. 1900 - 1911 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2018.2822826 |
Cover
Loading…
Abstract | Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. Objective: We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning. Methods: Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation. Results and Conclusion: Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications. |
---|---|
AbstractList | Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. Objective: We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning. Methods: Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation. Results and Conclusion: Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications. Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature.SIGNIFICANCEAnalysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature.We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning.OBJECTIVEWe propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning.Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation.METHODSOur method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation.Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications.RESULTS AND CONCLUSIONOur experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications. Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning. Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation. Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications. |
Author | Yang, Jianhua Wang, Qian Shen, Dinggang Cao, Xiaohuan Yap, Pew-Thian Zhang, Jun |
Author_xml | – sequence: 1 givenname: Xiaohuan orcidid: 0000-0002-2413-114X surname: Cao fullname: Cao, Xiaohuan organization: School of AutomationNorthwestern Polytechnical University and also with the Department of Radiology and BRIC University of North Carolina at Chapel Hill – sequence: 2 givenname: Jianhua surname: Yang fullname: Yang, Jianhua organization: School of AutomationNorthwestern Polytechnical University – sequence: 3 givenname: Jun orcidid: 0000-0001-5579-7094 surname: Zhang fullname: Zhang, Jun organization: Department of Radiology and BRICUniversity of North Carolina at Chapel Hill – sequence: 4 givenname: Qian surname: Wang fullname: Wang, Qian email: wang.qian@sjtu.edu.cn organization: School of Biomedical Engineering, Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Pew-Thian orcidid: 0000-0003-1489-2102 surname: Yap fullname: Yap, Pew-Thian organization: Department of Radiology and BRICUniversity of North Carolina at Chapel Hill – sequence: 6 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993391$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNU7Lb6AUSQAV98mTU3yeTPi1C3tRaqgrTPITN7Z02dmazJjMVvb8ZdF-2DISSE_M7NuTkn5GgIAxLyHOgSgJo3N-8-XiwZBb1kmuUpH5EFVJUuWcXhiCxovioNM-KYnKR0l49CC_mEHDNjDOcGFuTyHNsQe1d3WFz1boPFF9z4NEY3-jAUt8kPm8IVqwnLs3sXsThH3M5MxJRm4hOO9yF-e0oet65L-Gy_n5Lb9xc3qw_l9efLq9XZddkIKsYS6qblFVOgtVKCom7XlXDrBqQE7iojaqekrEwtXFsBU5IKhLyudcVVLWp-St7u6m6nusd1g0O22tlt9L2LP21w3v57M_ivdhN-WAlKa05zgdf7AjF8nzCNtvepwa5zA4YpWUal5oIZpTL66gF6F6Y45PYsA1DAszOdqZd_OzpY-fPHGYAd0MSQUsT2gAC1c452ztHOOdp9jlmjHmgaP_6OJDflu_8qX-yUHhEPL2nOIQ_-C26dqJQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1002_acm2_12968 crossref_primary_10_1088_1361_6560_ad67a6 crossref_primary_10_1016_j_neuroimage_2022_119444 crossref_primary_10_1016_j_bspc_2024_106172 crossref_primary_10_1109_TBME_2023_3280463 crossref_primary_10_1002_mp_15420 crossref_primary_10_1016_j_compmedimag_2022_102112 crossref_primary_10_1177_11795549241303606 crossref_primary_10_1016_j_neucom_2020_08_085 crossref_primary_10_1109_ACCESS_2022_3174360 crossref_primary_10_3390_brainsci15010046 crossref_primary_10_1109_JBHI_2020_3045977 crossref_primary_10_1109_TBME_2018_2885436 crossref_primary_10_1109_JBHI_2020_3016699 crossref_primary_10_1007_s11517_022_02725_7 crossref_primary_10_1016_j_compbiomed_2024_108948 crossref_primary_10_1016_j_media_2019_101545 crossref_primary_10_1117_1_JEI_33_5_053055 crossref_primary_10_1016_j_media_2021_102292 crossref_primary_10_1088_1361_6560_ad9e69 crossref_primary_10_3390_s23063208 crossref_primary_10_1016_j_compbiomed_2022_105780 crossref_primary_10_1109_TMI_2021_3059282 crossref_primary_10_1049_ipr2_13215 crossref_primary_10_3390_s21062200 crossref_primary_10_1007_s10489_022_04109_8 crossref_primary_10_1109_TNNLS_2022_3141119 crossref_primary_10_1109_TPAMI_2023_3243040 crossref_primary_10_1002_ima_23171 crossref_primary_10_1109_TMI_2019_2896170 crossref_primary_10_1016_j_compmedimag_2023_102322 crossref_primary_10_1016_j_media_2020_101638 crossref_primary_10_1002_mp_13994 crossref_primary_10_1016_j_inffus_2023_102061 crossref_primary_10_1016_j_neunet_2024_106426 crossref_primary_10_1016_j_neucom_2020_04_122 crossref_primary_10_1088_1361_6560_ad6952 crossref_primary_10_1088_2057_1976_ab446b crossref_primary_10_1109_TRPMS_2021_3107454 crossref_primary_10_1016_j_media_2023_102740 crossref_primary_10_1007_s10334_019_00782_y crossref_primary_10_1109_TPAMI_2018_2889096 crossref_primary_10_1007_s10334_023_01144_5 crossref_primary_10_1109_ACCESS_2020_3015504 crossref_primary_10_1016_j_media_2023_103034 crossref_primary_10_1002_mp_16291 crossref_primary_10_1016_j_neucom_2022_11_088 crossref_primary_10_1016_j_bspc_2019_101562 crossref_primary_10_1109_ACCESS_2020_3047829 crossref_primary_10_1007_s10489_021_03062_2 crossref_primary_10_1186_s12880_021_00636_x crossref_primary_10_1088_1361_6560_ac0afc crossref_primary_10_1007_s11063_023_11311_3 crossref_primary_10_3390_app10031171 crossref_primary_10_1016_j_eij_2024_100558 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1016_j_patcog_2019_107171 crossref_primary_10_1002_mrm_28688 crossref_primary_10_1016_j_ymeth_2020_09_007 crossref_primary_10_3389_fnins_2020_620235 crossref_primary_10_1016_j_media_2020_101817 crossref_primary_10_1002_mp_14464 crossref_primary_10_1007_s10489_021_02196_7 crossref_primary_10_1515_revneuro_2023_0115 crossref_primary_10_1002_mp_14935 crossref_primary_10_1186_s12893_023_01944_5 crossref_primary_10_1088_1361_6560_ab843e crossref_primary_10_1007_s12021_020_09483_7 crossref_primary_10_1016_j_media_2023_102962 crossref_primary_10_1016_j_patrec_2021_08_032 crossref_primary_10_1016_j_media_2024_103351 crossref_primary_10_1109_TMI_2019_2953788 crossref_primary_10_1007_s10489_022_04329_y |
Cites_doi | 10.1109/TMI.2016.2521800 10.1109/TMI.2002.803111 10.1109/TIP.2011.2170698 10.1109/TMI.2013.2265603 10.1016/S1361-8415(01)00036-6 10.1001/jama.2016.17216 10.1109/42.796284 10.1002/hbm.22233 10.1142/S0218001497000597 10.1088/0031-9155/46/3/201 10.1016/j.neuroimage.2017.07.008 10.1109/42.906424 10.1016/j.media.2017.05.004 10.1038/nature21056 10.1016/j.media.2010.07.002 10.1016/j.jneumeth.2004.07.014 10.1016/j.media.2008.03.006 10.1016/j.media.2007.06.004 10.1016/S1361-8415(01)80004-9 10.1016/j.media.2016.05.004 10.1016/S0262-8856(03)00137-9 10.1097/00004728-199801000-00028 10.1007/978-3-642-15816-2_5 10.1109/42.563664 10.1023/B:VISI.0000043755.93987.aa 10.1109/TMI.2003.815867 10.1016/j.neuroimage.2011.09.015 10.1146/annurev-bioeng-071516-044442 10.1109/TMI.2007.904691 10.1016/j.neuroimage.2009.10.065 10.1016/j.neuroimage.2008.12.037 10.1016/S1361-8415(98)80022-4 10.1016/S0031-3203(98)00095-8 10.1109/TMI.2014.2330355 10.1016/j.neuroimage.2008.10.040 10.1016/S1361-8415(01)80026-8 10.1016/j.neuroimage.2014.06.077 10.1016/j.media.2016.06.030 10.1007/978-3-319-47157-0_5 10.1097/00004728-199801000-00027 10.1016/j.media.2014.10.007 10.1016/j.neuroimage.2013.04.114 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2018.2822826 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1911 |
ExternalDocumentID | PMC6178830 29993391 10_1109_TBME_2018_2822826 8331111 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61473190; 81471733; 61401271 – fundername: NIH grantid: CA206100; AG053867 – fundername: National Key Research and Development Program of China grantid: 2017YFC0107600 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 16511101100; 16410722400 – fundername: NCI NIH HHS grantid: R01 CA206100 – fundername: NIA NIH HHS grantid: RF1 AG053867 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c404t-1bcf35271887740e8fd54adc16613a594ba76659b4af5127604e1760d8537b4b3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 14:11:28 EDT 2025 Thu Jul 10 20:34:41 EDT 2025 Mon Jun 30 08:35:50 EDT 2025 Mon Jul 21 06:00:20 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Tue Jul 01 03:28:30 EDT 2025 Wed Aug 27 02:30:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Personal use is permitted, but republication redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-1bcf35271887740e8fd54adc16613a594ba76659b4af5127604e1760d8537b4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5579-7094 0000-0002-2413-114X 0000-0002-7934-5698 0000-0003-1489-2102 |
PMID | 29993391 |
PQID | 2117131768 |
PQPubID | 85474 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6178830 pubmed_primary_29993391 crossref_primary_10_1109_TBME_2018_2822826 proquest_journals_2117131768 crossref_citationtrail_10_1109_TBME_2018_2822826 ieee_primary_8331111 proquest_miscellaneous_2068342977 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 ref14 ref55 ref10 ref17 ref19 ref18 de vos (ref53) 0 wu (ref50) 0 gutiérrez-becker (ref47) 0 ronneberger (ref5) 0 esteva (ref2) 2017; 542 ref45 ref48 ref42 ref41 ref44 ref43 ref9 ref4 ref3 ref6 wolterink (ref7) 0 cao (ref46) 0 ref35 rohé (ref51) 0 ref34 ref37 ref36 ref31 ref33 ref32 ref1 ref39 ref38 sokooti (ref11) 0 kim (ref8) 2012; 21 hellier (ref40) 0 hellier (ref25) 0 ref24 ref23 ref26 ref20 ref22 ref21 ref28 rueckert (ref16) 2010 ref27 ref29 pluim (ref30) 0 krebs (ref52) 0 ma (ref49) 0 li (ref54) 2017 |
References_xml | – ident: ref48 doi: 10.1109/TMI.2016.2521800 – ident: ref28 doi: 10.1109/TMI.2002.803111 – volume: 21 start-page: 1823 year: 2012 ident: ref8 article-title: A general fast registration framework by learning deformation-Appearance correlation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2170698 – ident: ref13 doi: 10.1109/TMI.2013.2265603 – start-page: 266 year: 0 ident: ref51 article-title: SVF-Net: Learning deformable image registration using shape matching publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref55 doi: 10.1016/S1361-8415(01)00036-6 – ident: ref3 doi: 10.1001/jama.2016.17216 – ident: ref35 doi: 10.1109/42.796284 – ident: ref29 doi: 10.1002/hbm.22233 – ident: ref27 doi: 10.1142/S0218001497000597 – start-page: 649 year: 0 ident: ref50 article-title: Unsupervised deep feature learning for deformable registration of MR brain images publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – start-page: 590 year: 0 ident: ref40 article-title: Intersubject registration of functional and anatomical data using SPM publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – start-page: 344 year: 0 ident: ref52 article-title: Robust nonrigid registration through agent-based action learning publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref15 doi: 10.1088/0031-9155/46/3/201 – start-page: 19 year: 0 ident: ref47 article-title: Learning optimization updates for multimodal registration publication-title: Proc Med Image Comput Comput -Assisted Intervention – ident: ref10 doi: 10.1016/j.neuroimage.2017.07.008 – start-page: 234 year: 0 ident: ref5 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – start-page: 452 year: 0 ident: ref30 article-title: Image registration by maximization of combined mutual information and gradient information publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref56 doi: 10.1109/42.906424 – ident: ref45 doi: 10.1016/j.media.2017.05.004 – volume: 542 start-page: 115 year: 2017 ident: ref2 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: ref36 doi: 10.1016/j.media.2010.07.002 – ident: ref26 doi: 10.1016/j.jneumeth.2004.07.014 – ident: ref41 doi: 10.1016/j.media.2008.03.006 – ident: ref34 doi: 10.1016/j.media.2007.06.004 – ident: ref32 doi: 10.1016/S1361-8415(01)80004-9 – ident: ref6 doi: 10.1016/j.media.2016.05.004 – ident: ref17 doi: 10.1016/S0262-8856(03)00137-9 – ident: ref24 doi: 10.1097/00004728-199801000-00028 – start-page: 131 year: 2010 ident: ref16 article-title: Medical image registration publication-title: Biomedical Image Processing doi: 10.1007/978-3-642-15816-2_5 – ident: ref33 doi: 10.1109/42.563664 – ident: ref37 doi: 10.1023/B:VISI.0000043755.93987.aa – start-page: 204 year: 0 ident: ref53 article-title: End-to-end unsupervised deformable image registration with a convolutional neural network publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – ident: ref31 doi: 10.1109/TMI.2003.815867 – ident: ref22 doi: 10.1016/j.neuroimage.2011.09.015 – ident: ref1 doi: 10.1146/annurev-bioeng-071516-044442 – ident: ref18 doi: 10.1109/TMI.2007.904691 – ident: ref38 doi: 10.1016/j.neuroimage.2009.10.065 – start-page: 240 year: 0 ident: ref49 article-title: Multimodal image registration with deep context reinforcement learning publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref43 doi: 10.1016/j.neuroimage.2008.12.037 – year: 2017 ident: ref54 article-title: Nonrigid image registration using fully convolutional networks with deep self-supervision – ident: ref20 doi: 10.1016/S1361-8415(98)80022-4 – ident: ref14 doi: 10.1016/S0031-3203(98)00095-8 – ident: ref42 doi: 10.1109/TMI.2014.2330355 – start-page: 1 year: 0 ident: ref46 article-title: Learning-based multimodal image registration for prostate cancer radiation therapy publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref21 doi: 10.1016/j.neuroimage.2008.10.040 – ident: ref12 doi: 10.1016/S1361-8415(01)80026-8 – ident: ref4 doi: 10.1016/j.neuroimage.2014.06.077 – ident: ref19 doi: 10.1016/j.media.2016.06.030 – ident: ref44 doi: 10.1007/978-3-319-47157-0_5 – ident: ref23 doi: 10.1097/00004728-199801000-00027 – start-page: 590 year: 0 ident: ref25 article-title: Inter-subject registration of functional and anatomical data using SPM publication-title: Proc Med Image Comput Comput -Assisted Intervention – ident: ref9 doi: 10.1016/j.media.2014.10.007 – start-page: 14 year: 0 ident: ref7 article-title: Deep MR to CT synthesis using unpaired data – ident: ref39 doi: 10.1016/j.neuroimage.2013.04.114 – start-page: 232 year: 0 ident: ref11 article-title: Nonrigid image registration using multiscale 3-D convolutional neural networks publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention |
SSID | ssj0014846 |
Score | 2.5937665 |
Snippet | Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse... Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. We propose... Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1900 |
SubjectTerms | Algorithms Brain - diagnostic imaging Databases, Factual Deep Learning Deformable registration Deformation Formability Humans Image Processing, Computer-Assisted - methods Image registration Imaging, Three-Dimensional key-points sampling Machine learning Nonlinear Dynamics nonlinear regression Parameters Registration Regression analysis Strain Task analysis Therapeutic applications Tomography, X-Ray Computed Training Tuning |
Title | Deformable Image Registration Using a Cue-Aware Deep Regression Network |
URI | https://ieeexplore.ieee.org/document/8331111 https://www.ncbi.nlm.nih.gov/pubmed/29993391 https://www.proquest.com/docview/2117131768 https://www.proquest.com/docview/2068342977 https://pubmed.ncbi.nlm.nih.gov/PMC6178830 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48GiBBgoyEidEts7a8eNY-qAgbQ-olXqLbGdSEG22Khsh8esZx9moW1WISxTJk8j2eDLfZD6PAd7r2gpSdZ0XbkoBivImNw13uWicj9Gzdv0pCrMTdXwmv56X52vwcdwLg4g9-Qwn8bbP5dfz0MVfZbtGiGjh67BOgVvaqzVmDKRJm3J4QQY8tXLIYBbc7p5-mh1GEpeZRM4k4elYAZiAkRC2WHFH_fkq90HNu4zJWy7o6AnMlp1PzJOfk27hJ-HPnbqO_zu6p_B4wKJsLy2eZ7CG7SY8ulWhcBMezIbc-xZ8PsAe4PpLZF-u6DPEvuHFWHaX9dwD5th-h_neb3eD7ADxOsokpm3LThLj_DmcHR2e7h_nwzEMeZBcLvLCh4ZgGjkxQ1iRo2nqUro6FOTahSut9E4rVVovXUPwQSsusaBrTUhAe-nFC9ho5y1uA7NGKcIYGKbBSW1LZxtVqyD11NsgDM-AL7VRhaFGeTwq47LqYxVuq6jLKuqyGnSZwYfxketUoONfwltx3kfBYcoz2FmqvBpM-FdFkTEF8DQQk8G7sZmML2ZUXIvzjmS4MoI8utYZvEwrZHz3coVloFfWzigQC3uvtrQ_vvcFvuO2TSP4q_t7-xoexjElotsObCxuOnxDyGjh3_Ym8RebDAWS |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLBAoYiRMiW2ft-HEsfbCFZg9oK_UW2Y4DVUu2Khsh8esZO9moW1WISxQpkyj2eDLfZL4ZA7yXlWao6irNzBgDFGFVqmpqUlYbG6JnaeIuCsVUTE74l9P8dA0-DrUw3vtIPvOjcBpz-dXcteFX2Y5iLFj4Hbibh2LcrlpryBlw1ZXl0AxNeKx5n8PMqN6ZfSoOAo1LjQJrEhF16AGM0Igxna04pLjDym1g8yZn8poTOnwMxfL1O-7J-ahd2JH7c6Oz4_-O7wk86tEo2e2Wz1NY880GPLzWo3AD7hV99n0TPu_7CHHthSdHP_FDRL7570PjXRLZB8SQvdanu7_NlSf73l8GmY5r25BpxznfgpPDg9neJO03Ykgdp3yRZtbVCNTQjSlEi9Srusq5qVyGzp2ZXHNrpBC5ttzUCCCkoNxneKwQC0jLLXsG68288S-AaCUEogzvxs5wqXOja1EJx-XYascUTYAutVG6vkt52CzjoozRCtVl0GUZdFn2ukzgw3DLZdei41_Cm2HeB8F-yhPYXqq87I34V4mxMYbwOBCVwLvhMppfyKmYxs9blKFCMfTpUibwvFshw7OXKywBubJ2BoHQ2nv1SnP2I7b4DoWbitGXt7_tW7g_mRXH5fHR9OsreBDG19HetmF9cdX614iTFvZNNI-_Xu8I2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformable+Image+Registration+Using+Cue-aware+Deep+Regression+Network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Cao%2C+Xiaohuan&rft.au=Yang%2C+Jianhua&rft.au=Zhang%2C+Jun&rft.au=Wang%2C+Qian&rft.date=2018-09-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=9&rft.spage=1900&rft.epage=1911&rft_id=info:doi/10.1109%2FTBME.2018.2822826&rft_id=info%3Apmid%2F29993391&rft.externalDocID=PMC6178830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |