Deformable Image Registration Using a Cue-Aware Deep Regression Network

Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. Objective: We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 9; pp. 1900 - 1911
Main Authors Cao, Xiaohuan, Yang, Jianhua, Zhang, Jun, Wang, Qian, Yap, Pew-Thian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. Objective: We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning. Methods: Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation. Results and Conclusion: Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2018.2822826