Measurements of Turbulent Mixing and Subsiding Shells in Trade Wind Cumuli

High-resolution measurements of the turbulent, thermodynamic, and microphysical structure of the edges of trade wind cumuli have been performed with the Airborne Cloud Turbulence Observation System. Lateral entrainment of subsaturated air into the cloud region leads to an evaporative cooling effect....

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 71; no. 8; pp. 2810 - 2822
Main Authors Katzwinkel, Jeannine, Siebert, Holger, Heus, Thijs, Shaw, Raymond A
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-resolution measurements of the turbulent, thermodynamic, and microphysical structure of the edges of trade wind cumuli have been performed with the Airborne Cloud Turbulence Observation System. Lateral entrainment of subsaturated air into the cloud region leads to an evaporative cooling effect. The negatively buoyant air partly enhances the compensating downdraft, forming a subsiding shell at cloud edge. Based on the presented observations, the subsiding shell is divided into a turbulent and humid inner shell adjacent to the cloud interior and a nonbuoyant, nonturbulent outer shell. In the trade wind region, continuous development of shallow cumuli over the day allows for an analysis of the properties of both shells as a function of different cloud evolution stages. The shallow cumuli are divided into actively growing, decelerated, and dissolving based on cloud properties. As the cumuli evolve from actively growing to dissolving, the subsaturated environmental air is mixed deeper and deeper into the cloud region and the subsiding shell grows at the expense of the cloud. This measured evolution of the subsiding shell compares favorably with the predictions of a direct numerical simulation of an idealized subsiding shell. The thickness of the measured outer shell decreases with the evolution of the cumuli while the intensity of the downdraft is nearly constant.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-13-0222.1