Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants?

High oxidative stress inhibits the synthesis and accumulation of chlorophylls, the pigments that absorb and use light. We collated evidence from a diverse array of studies demonstrating that chlorophyll concentration increases in response to low-level stress and decreases in response to high-level s...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 726; p. 138637
Main Authors Agathokleous, Evgenios, Feng, ZhaoZhong, Peñuelas, Josep
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High oxidative stress inhibits the synthesis and accumulation of chlorophylls, the pigments that absorb and use light. We collated evidence from a diverse array of studies demonstrating that chlorophyll concentration increases in response to low-level stress and decreases in response to high-level stress. These observations were from 33 species, >20 stress-inducing agents, 43 experimental setups and 177 dose responses, suggesting generality. Data meta-analysis indicated that the maximum stimulatory response did not differ significantly among species and agents. The stimulatory response maximized within a defined time window (median = 150–160% of the control response), after which it decreased but remained elevated (median = 120–130% of control response). The common stimulation of chlorophylls by low-level stress indicates that chlorophylls are major components of stress biology, with their increased concentration at low-level stress suggestive of their requirement for normal functioning and health. Increased chlorophyll concentration in response to low-level stress may equip systems with an enhanced capacity for defense against high-level (health-threatening) challenges within defined time windows, such as pollution or herbivores. These developments have wide-ranging implications in ecophysiology, biotic interactions and evolution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2020.138637