Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface

An attempt is made to investigate the steady magnetohydrodynamic convective flow of the viscous nanofluid due to a permeable exponentially stretching porous surface. Water is used as a traditional fluid while nanoparticles include copper and alumina. The fluid is electrically conducting, subject to...

Full description

Saved in:
Bibliographic Details
Published inHeat transfer (Hoboken, N.J. Print) Vol. 49; no. 3; pp. 1374 - 1385
Main Author Veera Krishna, M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An attempt is made to investigate the steady magnetohydrodynamic convective flow of the viscous nanofluid due to a permeable exponentially stretching porous surface. Water is used as a traditional fluid while nanoparticles include copper and alumina. The fluid is electrically conducting, subject to an applied magnetic field with a constant strength. Convective type boundary conditions are employed in modeling the heat transfer process. The nonlinear partial differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations and then solved using the Runge‐Kutta fourth‐order method. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity and temperature, as well as local shear stress and local Nusselt number, is presented graphically. Hartman number increase diminishes the velocity and has the contrary result in the subjective sense for the mass transfer parameter. An increase in the Prandtl number Pr lessens the temperature and thickness of the thermal boundary layer. The main conclusions have been indicated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2688-4534
2688-4542
DOI:10.1002/htj.21667