Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses

Sugars are important signals in the regulation of plant metabolism and development. During stress and in senescing leaves, sugars often accumulate. In addition, both sugar accumulation and stress can induce leaf senescence. Infection by bacterial and fungal pathogens and attack by herbivores and gal...

Full description

Saved in:
Bibliographic Details
Published inPlant biology (Stuttgart, Germany) Vol. 10; no. s1; pp. 50 - 62
Main Authors Wingler, A., Roitsch, T.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sugars are important signals in the regulation of plant metabolism and development. During stress and in senescing leaves, sugars often accumulate. In addition, both sugar accumulation and stress can induce leaf senescence. Infection by bacterial and fungal pathogens and attack by herbivores and gall‐forming insects may influence leaf senescence via modulation of the sugar status, either by directly affecting primary carbon metabolism or by regulating steady state levels of plant hormones. Many types of biotic interactions involve the induction of extracellular invertase as the key enzyme of an apoplasmic phloem unloading pathway, resulting in a sourcesink transition and an increased hexose/sucrose ratio. Induction of the levels of the phytohormones ethylene and jasmonate in biotic interactions results in accelerated senescence, whereas an increase in plant‐ or pathogen‐derived cytokinins delays senescence and results in the formation of green islands within senescing leaves. Interactions between sugar and hormone signalling also play a role in response to abiotic stress. For example, interactions between sugar and abscisic acid (ABA) signalling may be responsible for the induction of senescence during drought stress. Cold treatment, on the other hand, can result in delayed senescence, despite sugar and ABA accumulation. Moreover, natural variation can be found in senescence regulation by sugars and in response to stress: in response to drought stress, both drought escape and dehydration avoidance strategies have been described in different Arabidopsis accessions. The regulation of senescence by sugars may be key to these different strategies in response to stress.
Bibliography:Supporting info itemSupporting info item
istex:B235E1FF914E74B9868C1B5D10512E22581B9521
ArticleID:PLB086
ark:/67375/WNG-TJL9BGZ8-6
Guest editor
K. Krupinska
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1435-8603
1438-8677
DOI:10.1111/j.1438-8677.2008.00086.x