Occlusion-Aware Human Mesh Model-Based Gait Recognition

Partial occlusion of the human body caused by obstacles or a limited camera field of view often occurs in surveillance videos, which affects the performance of gait recognition in practice. Existing methods for gait recognition against occlusion require a bounding box or the height of a full human b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 18; pp. 1309 - 1321
Main Authors Xu, Chi, Makihara, Yasushi, Li, Xiang, Yagi, Yasushi
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Partial occlusion of the human body caused by obstacles or a limited camera field of view often occurs in surveillance videos, which affects the performance of gait recognition in practice. Existing methods for gait recognition against occlusion require a bounding box or the height of a full human body as a prerequisite, which is unobserved in occlusion scenarios. In this paper, we propose an occlusion-aware model-based gait recognition method that works directly on gait videos under occlusion without the above-mentioned prerequisite. Specifically, given a gait sequence that only contains non-occluded body parts in the images, we directly fit a skinned multi-person linear (SMPL)-based human mesh model to the input images without any pre-normalization or registration of the human body. We further use the pose and shape features extracted from the estimated SMPL model for recognition purposes, and use the extracted camera parameters in the occlusion attenuation module to reduce intra-subject variation in human model fitting caused by occlusion pattern differences. Experiments on occlusion samples simulated from the OU-MVLP dataset demonstrated the effectiveness of the proposed method, which outperformed state-of-the-art gait recognition methods by about 15% rank-1 identification rate and 2% equal error rate in the identification and verification scenarios, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2023.3236181