Fast Multi-view Clustering via Ensembles: Towards Scalability, Superiority, and Simplicity

Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 11; pp. 1 - 16
Main Authors Huang, Dong, Wang, Chang-Dong, Lai, Jian-Huang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast m ulti-v i ew c lustering via e nsembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE .
AbstractList Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast m ulti-v i ew c lustering via e nsembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE .
Author Wang, Chang-Dong
Lai, Jian-Huang
Huang, Dong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0003-3923-8828
  surname: Huang
  fullname: Huang, Dong
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 2
  givenname: Chang-Dong
  orcidid: 0000-0001-5972-559X
  surname: Wang
  fullname: Wang, Chang-Dong
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Jian-Huang
  orcidid: 0000-0003-3883-2024
  surname: Lai
  fullname: Lai, Jian-Huang
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
BookMark eNp9kE9PwkAQxTcGEwH9ACYemni1uH_bXW8GQY0YD-DFS7NsZ82S0tbdFsK3twgH48HTzEveb17mDVCvrEpA6JLgESFY3S5eHiYjiikbMcqSRMkT1CdCyJgSRXrdjjmJOePpGRqEsMIYy1SSPvqY6tBEr23RuHjjYBuNizY04F35GW2cjiZlgPWygHAXLaqt9nmI5kYXeukK1-xuonlbd-bK_whd5tHcrevCmU6fo1OriwAXxzlE79PJYvwUz94en8f3s9hwzJoYwCohlSIp5QanuTBYMJ5YlRhiuASWg6ZS8DSl1jJqFSTKGiYss5JjEGyIrg93a199tRCabFW1vuwiMypTJiRXSnUucnAZX4XgwWa1d2vtdxnB2b7CbF9htq8wO1bYMekfpvtLN64qG69d8S95dSAdAPxKwiRJJGffZu6AnQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106170
crossref_primary_10_1093_bib_bbae485
crossref_primary_10_1109_TSMC_2024_3418582
crossref_primary_10_1016_j_knosys_2025_112956
crossref_primary_10_1109_TCSVT_2024_3393148
crossref_primary_10_1109_TFUZZ_2024_3399740
crossref_primary_10_1016_j_ins_2024_121532
crossref_primary_10_1016_j_knosys_2024_112247
crossref_primary_10_1016_j_eswa_2024_124021
crossref_primary_10_1016_j_eswa_2025_126488
crossref_primary_10_1016_j_inffus_2024_102507
crossref_primary_10_1016_j_neunet_2024_106696
crossref_primary_10_1109_TETCI_2024_3353598
crossref_primary_10_1109_TGRS_2025_3538632
crossref_primary_10_1016_j_inffus_2024_102483
crossref_primary_10_1109_LSP_2025_3527231
crossref_primary_10_1016_j_neunet_2025_107131
crossref_primary_10_1109_TETCI_2024_3369316
crossref_primary_10_1007_s10489_024_05368_3
crossref_primary_10_1016_j_neucom_2024_128627
crossref_primary_10_1016_j_neunet_2024_106503
crossref_primary_10_3390_a16040214
crossref_primary_10_1007_s10586_024_04549_6
crossref_primary_10_1016_j_ins_2024_121187
crossref_primary_10_1016_j_neucom_2024_128037
crossref_primary_10_1007_s00371_024_03703_w
crossref_primary_10_1016_j_neucom_2024_128594
crossref_primary_10_1016_j_knosys_2025_113282
crossref_primary_10_1016_j_neunet_2025_107217
crossref_primary_10_1016_j_neunet_2024_106542
crossref_primary_10_1007_s11063_023_11287_0
crossref_primary_10_1016_j_patcog_2023_110082
crossref_primary_10_1109_TSMC_2024_3465039
crossref_primary_10_1016_j_ins_2024_120935
crossref_primary_10_1007_s11063_023_11147_x
crossref_primary_10_3390_a16050245
crossref_primary_10_1016_j_dsp_2025_105078
crossref_primary_10_1016_j_patcog_2024_110715
crossref_primary_10_1145_3694689
crossref_primary_10_1109_TPAMI_2024_3521478
crossref_primary_10_1109_TMM_2024_3521776
crossref_primary_10_1109_TNNLS_2024_3349405
crossref_primary_10_1109_TKDE_2024_3392209
crossref_primary_10_1109_ACCESS_2023_3271730
crossref_primary_10_1007_s00500_023_08723_7
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_1109_TCYB_2024_3443198
crossref_primary_10_1016_j_knosys_2025_113119
crossref_primary_10_1109_TMC_2024_3419021
crossref_primary_10_1016_j_neucom_2024_129253
crossref_primary_10_1016_j_patcog_2024_110592
crossref_primary_10_1016_j_eswa_2023_121298
crossref_primary_10_1109_TETCI_2024_3353576
crossref_primary_10_1016_j_patcog_2023_110065
crossref_primary_10_1016_j_inffus_2024_102587
crossref_primary_10_1109_LSP_2024_3408606
crossref_primary_10_1016_j_dsp_2024_104815
crossref_primary_10_1016_j_eswa_2025_126835
crossref_primary_10_1109_TNNLS_2023_3332335
crossref_primary_10_1007_s00530_024_01637_w
crossref_primary_10_1016_j_engappai_2023_106919
crossref_primary_10_1109_TETCI_2023_3306233
crossref_primary_10_1109_ACCESS_2023_3346058
crossref_primary_10_1007_s11704_024_40004_w
crossref_primary_10_1016_j_patcog_2023_109470
crossref_primary_10_1109_TFUZZ_2024_3489025
crossref_primary_10_1109_TCE_2024_3376397
crossref_primary_10_1016_j_ins_2024_121482
crossref_primary_10_1016_j_neucom_2025_129889
crossref_primary_10_1109_TCSVT_2024_3382761
crossref_primary_10_1016_j_neucom_2025_129764
crossref_primary_10_1109_LSP_2023_3298284
crossref_primary_10_1109_TCSVT_2024_3399596
crossref_primary_10_1016_j_patcog_2023_109836
crossref_primary_10_1016_j_neunet_2024_106884
Cites_doi 10.1109/TPAMI.2005.113
10.1109/TPAMI.2022.3197238
10.1145/3474085.3475516
10.1109/TIP.2021.3131941
10.24963/ijcai.2019/524
10.1609/aaai.v28i1.8950
10.1109/TCYB.2021.3049633
10.1609/aaai.v29i1.9598
10.1016/j.inffus.2019.09.005
10.1109/TCYB.2020.3035043
10.1109/CVPR.2015.7298657
10.1109/TNNLS.2019.2906867
10.1109/TCYB.2018.2869789
10.1609/aaai.v34i04.5867
10.1109/TPAMI.2022.3155499
10.1023/B:VISI.0000042993.50813.60
10.1109/TNNLS.2022.3192445
10.1109/ICDM.2019.00148
10.1109/TCYB.2014.2358564
10.1109/TAI.2021.3065894
10.1109/TPAMI.2018.2879108
10.1109/TPAMI.2018.2847335
10.1016/j.patrec.2009.09.011
10.24963/ijcai.2017/396
10.1109/CVPR46437.2021.01102
10.1016/j.neunet.2019.10.010
10.1109/ICCV.2015.185
10.24963/ijcai.2017/357
10.1109/TPAMI.2005.237
10.1016/j.patcog.2015.08.015
10.1109/TPAMI.2018.2852750
10.1109/TSMC.2018.2876202
10.1109/TCSVT.2022.3159371
10.1109/TKDE.2019.2903410
10.1109/TKDE.2019.2933511
10.1109/TKDE.2015.2503753
10.1016/j.inffus.2020.10.013
10.1007/s10115-016-0988-y
10.1109/TCYB.2017.2702343
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2023.3236698
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 16
ExternalDocumentID 10_1109_TKDE_2023_3236698
10016684
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c403t-eef958991724c07d5c05346f96c1c48e3dea2854772ff32f9e69fc35f3f840e53
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 06:02:42 EDT 2025
Tue Jul 01 01:19:42 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Mon Aug 04 05:48:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-eef958991724c07d5c05346f96c1c48e3dea2854772ff32f9e69fc35f3f840e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3923-8828
0000-0001-5972-559X
0000-0003-3883-2024
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10016684
PQID 2873584999
PQPubID 85438
PageCount 16
ParticipantIDs crossref_primary_10_1109_TKDE_2023_3236698
crossref_citationtrail_10_1109_TKDE_2023_3236698
proquest_journals_2873584999
ieee_primary_10016684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref37
ref14
ref36
ref31
ref30
ng (ref34) 2002
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
li (ref35) 2012
liu (ref12) 2021
strehl (ref32) 2003; 3
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
liang (ref8) 2022; 34
ref28
ref27
ref29
nie (ref4) 2016
ref7
ref9
ref3
ref6
ref5
ref40
References_xml – ident: ref24
  doi: 10.1109/TPAMI.2005.113
– ident: ref45
  doi: 10.1109/TPAMI.2022.3197238
– ident: ref19
  doi: 10.1145/3474085.3475516
– ident: ref20
  doi: 10.1109/TIP.2021.3131941
– ident: ref11
  doi: 10.24963/ijcai.2019/524
– ident: ref3
  doi: 10.1609/aaai.v28i1.8950
– start-page: 789
  year: 2012
  ident: ref35
  article-title: Segmentation using superpixels: A bipartite graph partitioning approach
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref31
  doi: 10.1109/TCYB.2021.3049633
– ident: ref17
  doi: 10.1609/aaai.v29i1.9598
– ident: ref39
  doi: 10.1016/j.inffus.2019.09.005
– ident: ref38
  doi: 10.1109/TCYB.2020.3035043
– start-page: 849
  year: 2002
  ident: ref34
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref40
  doi: 10.1109/CVPR.2015.7298657
– ident: ref7
  doi: 10.1109/TNNLS.2019.2906867
– ident: ref22
  doi: 10.1109/TCYB.2018.2869789
– ident: ref18
  doi: 10.1609/aaai.v34i04.5867
– ident: ref43
  doi: 10.1109/TPAMI.2022.3155499
– ident: ref41
  doi: 10.1023/B:VISI.0000042993.50813.60
– start-page: 1881
  year: 2016
  ident: ref4
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref23
  doi: 10.1109/TNNLS.2022.3192445
– ident: ref5
  doi: 10.1109/ICDM.2019.00148
– ident: ref15
  doi: 10.1109/TCYB.2014.2358564
– ident: ref2
  doi: 10.1109/TAI.2021.3065894
– ident: ref10
  doi: 10.1109/TPAMI.2018.2879108
– ident: ref21
  doi: 10.1109/TPAMI.2018.2847335
– volume: 34
  start-page: 3418
  year: 2022
  ident: ref8
  article-title: Multi-view spectral clustering with high-order optimal neighborhood laplacian matrix
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref1
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref33
  doi: 10.24963/ijcai.2017/396
– ident: ref44
  doi: 10.1109/CVPR46437.2021.01102
– ident: ref6
  doi: 10.1016/j.neunet.2019.10.010
– volume: 3
  start-page: 583
  year: 2003
  ident: ref32
  article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– start-page: 6850
  year: 2021
  ident: ref12
  article-title: One pass late fusion multi-view clustering
  publication-title: Proc Int Conf Mach Learn
– ident: ref9
  doi: 10.1109/ICCV.2015.185
– ident: ref42
  doi: 10.24963/ijcai.2017/357
– ident: ref26
  doi: 10.1109/TPAMI.2005.237
– ident: ref27
  doi: 10.1016/j.patcog.2015.08.015
– ident: ref13
  doi: 10.1109/TPAMI.2018.2852750
– ident: ref30
  doi: 10.1109/TSMC.2018.2876202
– ident: ref14
  doi: 10.1109/TCSVT.2022.3159371
– ident: ref16
  doi: 10.1109/TKDE.2019.2903410
– ident: ref37
  doi: 10.1109/TKDE.2019.2933511
– ident: ref28
  doi: 10.1109/TKDE.2015.2503753
– ident: ref36
  doi: 10.1016/j.inffus.2020.10.013
– ident: ref29
  doi: 10.1007/s10115-016-0988-y
– ident: ref25
  doi: 10.1109/TCYB.2017.2702343
SSID ssj0008781
Score 2.6961966
Snippet Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bipartite graph
Clustering
Clustering algorithms
Complexity
Data clustering
Data models
Datasets
Ensemble clustering
Fuses
Graph theory
Hybrid early-late fusion
Large-scale clustering
Linear time
Multi-view clustering
Partitioning algorithms
Scalability
Tuning
Title Fast Multi-view Clustering via Ensembles: Towards Scalability, Superiority, and Simplicity
URI https://ieeexplore.ieee.org/document/10016684
https://www.proquest.com/docview/2873584999
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTu2hPKsuL_nQEyIhu3acmBuiu0KgcmGREJfIdsYS6jZbbRIk-PWMnSwCqlbNKVackaXxYz7PzDcA34wT9Pib-0SPCKCIPDLOSWrmXEvMhEHv0f1xJc9vxMVtetsnq4dcGEQMwWcY-9fgyy_ntvVXZceeL0jKXKzACiG3LlnrZdvNs1CRlOAFgSIust6FOUzU8fTy-zj2dcJjPuJSqvzNIRSqqvyxFYfzZbIGV8uRdWElP-O2MbF9ekfa-N9DX4fPvaXJTrupsQEfsNqEtWUVB9Yv6k349IqScAvuJrpuWEjLjbzXgJ3NWs-lQB_Zw71m46rGX2aG9QmbhojbmiTpWcf2_XjErltPnTxfhIauSnZ9H2LWqb0NN5Px9Ow86usvRFYkvIkQnUoJj5GNI2ySlamlFSukU9IOrciRl6h9AiYZ6M7xkVMolbM8ddwRbMSUf4HVal7hV2Bac52IcqQsGXDCZsoYkiyNGlok2eUAkqVCCtuTk_saGbMigJREFV6Hhddh0etwAIcvv_zumDn-1Xnb6-RVx04dA9hbqr3oF29dEIjkZJeR6bzzl9924aOX3uUk7sFqs2hxn4yTxhyESfkMoxPe-w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcKJQithTwAS6IpNnYcWIkDqjd1ZZte-lWqrgExxlLFUu2ahJQeRdehWdj7GRXBQS3SuQUK7aj2F_G89nzA_CisIIut3Mf6ZgIisiCwlpJxYxriako0J3oHh3Lyal4f5acrcH3lS8MInrjMwzdrT_LLxemdVtluy5ekJSZ6G0op3j1lRha_fZgn6bzZRyPR7O9SdAnEQiMiHgTIFqVEKmghVqYKC0TQ7AT0ipphkZkyEvUzouQtExreWwVSmUNTyy3xH3QJYUgCX-LFI0k7tzDVoI-S30OVCI0RMO4SPtD02GkdmfT_VHoMpOHPOZSquyXZc_ncflD-PsVbbwBP5Zj0RmyfArbpgjNt9_CRP63g3Uf7vW6NHvXgf8BrGG1CRvLPBWsF1ubcPda0MWH8GGs64Z5x-PAnYuwvXnrokXQQ_blXLNRVePnYo71GzbzNsU19aTnXTzzq9fspHXBoReXvqCrkp2ce6t8Km_B6Y187yNYrxYVPgamNdeRKGNlSEUVJlVFQT3LQg0NUt_lAKIlAHLTh193WUDmuadhkcodZnKHmbzHzABerZpcdLFH_lV5y2HgWsVu-gews4RZ3ounOieazEnzJHKw_Zdmz-H2ZHZ0mB8eHE-fwB33ps4DcwfWm8sWn5Iq1hTP_A_B4ONNg-onB_A7lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Multi-View+Clustering+Via+Ensembles%3A+Towards+Scalability%2C+Superiority%2C+and+Simplicity&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Huang%2C+Dong&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2023-11-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=11&rft.spage=11388&rft.epage=11402&rft_id=info:doi/10.1109%2FTKDE.2023.3236698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2023_3236698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon