Fast Multi-view Clustering via Ensembles: Towards Scalability, Superiority, and Simplicity
Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion,...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 11; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast m ulti-v i ew c lustering via e nsembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE . |
---|---|
AbstractList | Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast m ulti-v i ew c lustering via e nsembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE . |
Author | Wang, Chang-Dong Lai, Jian-Huang Huang, Dong |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0003-3923-8828 surname: Huang fullname: Huang, Dong organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China – sequence: 2 givenname: Chang-Dong orcidid: 0000-0001-5972-559X surname: Wang fullname: Wang, Chang-Dong organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Jian-Huang orcidid: 0000-0003-3883-2024 surname: Lai fullname: Lai, Jian-Huang organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
BookMark | eNp9kE9PwkAQxTcGEwH9ACYemni1uH_bXW8GQY0YD-DFS7NsZ82S0tbdFsK3twgH48HTzEveb17mDVCvrEpA6JLgESFY3S5eHiYjiikbMcqSRMkT1CdCyJgSRXrdjjmJOePpGRqEsMIYy1SSPvqY6tBEr23RuHjjYBuNizY04F35GW2cjiZlgPWygHAXLaqt9nmI5kYXeukK1-xuonlbd-bK_whd5tHcrevCmU6fo1OriwAXxzlE79PJYvwUz94en8f3s9hwzJoYwCohlSIp5QanuTBYMJ5YlRhiuASWg6ZS8DSl1jJqFSTKGiYss5JjEGyIrg93a199tRCabFW1vuwiMypTJiRXSnUucnAZX4XgwWa1d2vtdxnB2b7CbF9htq8wO1bYMekfpvtLN64qG69d8S95dSAdAPxKwiRJJGffZu6AnQ |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_neunet_2024_106170 crossref_primary_10_1093_bib_bbae485 crossref_primary_10_1109_TSMC_2024_3418582 crossref_primary_10_1016_j_knosys_2025_112956 crossref_primary_10_1109_TCSVT_2024_3393148 crossref_primary_10_1109_TFUZZ_2024_3399740 crossref_primary_10_1016_j_ins_2024_121532 crossref_primary_10_1016_j_knosys_2024_112247 crossref_primary_10_1016_j_eswa_2024_124021 crossref_primary_10_1016_j_eswa_2025_126488 crossref_primary_10_1016_j_inffus_2024_102507 crossref_primary_10_1016_j_neunet_2024_106696 crossref_primary_10_1109_TETCI_2024_3353598 crossref_primary_10_1109_TGRS_2025_3538632 crossref_primary_10_1016_j_inffus_2024_102483 crossref_primary_10_1109_LSP_2025_3527231 crossref_primary_10_1016_j_neunet_2025_107131 crossref_primary_10_1109_TETCI_2024_3369316 crossref_primary_10_1007_s10489_024_05368_3 crossref_primary_10_1016_j_neucom_2024_128627 crossref_primary_10_1016_j_neunet_2024_106503 crossref_primary_10_3390_a16040214 crossref_primary_10_1007_s10586_024_04549_6 crossref_primary_10_1016_j_ins_2024_121187 crossref_primary_10_1016_j_neucom_2024_128037 crossref_primary_10_1007_s00371_024_03703_w crossref_primary_10_1016_j_neucom_2024_128594 crossref_primary_10_1016_j_knosys_2025_113282 crossref_primary_10_1016_j_neunet_2025_107217 crossref_primary_10_1016_j_neunet_2024_106542 crossref_primary_10_1007_s11063_023_11287_0 crossref_primary_10_1016_j_patcog_2023_110082 crossref_primary_10_1109_TSMC_2024_3465039 crossref_primary_10_1016_j_ins_2024_120935 crossref_primary_10_1007_s11063_023_11147_x crossref_primary_10_3390_a16050245 crossref_primary_10_1016_j_dsp_2025_105078 crossref_primary_10_1016_j_patcog_2024_110715 crossref_primary_10_1145_3694689 crossref_primary_10_1109_TPAMI_2024_3521478 crossref_primary_10_1109_TMM_2024_3521776 crossref_primary_10_1109_TNNLS_2024_3349405 crossref_primary_10_1109_TKDE_2024_3392209 crossref_primary_10_1109_ACCESS_2023_3271730 crossref_primary_10_1007_s00500_023_08723_7 crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_1109_TCYB_2024_3443198 crossref_primary_10_1016_j_knosys_2025_113119 crossref_primary_10_1109_TMC_2024_3419021 crossref_primary_10_1016_j_neucom_2024_129253 crossref_primary_10_1016_j_patcog_2024_110592 crossref_primary_10_1016_j_eswa_2023_121298 crossref_primary_10_1109_TETCI_2024_3353576 crossref_primary_10_1016_j_patcog_2023_110065 crossref_primary_10_1016_j_inffus_2024_102587 crossref_primary_10_1109_LSP_2024_3408606 crossref_primary_10_1016_j_dsp_2024_104815 crossref_primary_10_1016_j_eswa_2025_126835 crossref_primary_10_1109_TNNLS_2023_3332335 crossref_primary_10_1007_s00530_024_01637_w crossref_primary_10_1016_j_engappai_2023_106919 crossref_primary_10_1109_TETCI_2023_3306233 crossref_primary_10_1109_ACCESS_2023_3346058 crossref_primary_10_1007_s11704_024_40004_w crossref_primary_10_1016_j_patcog_2023_109470 crossref_primary_10_1109_TFUZZ_2024_3489025 crossref_primary_10_1109_TCE_2024_3376397 crossref_primary_10_1016_j_ins_2024_121482 crossref_primary_10_1016_j_neucom_2025_129889 crossref_primary_10_1109_TCSVT_2024_3382761 crossref_primary_10_1016_j_neucom_2025_129764 crossref_primary_10_1109_LSP_2023_3298284 crossref_primary_10_1109_TCSVT_2024_3399596 crossref_primary_10_1016_j_patcog_2023_109836 crossref_primary_10_1016_j_neunet_2024_106884 |
Cites_doi | 10.1109/TPAMI.2005.113 10.1109/TPAMI.2022.3197238 10.1145/3474085.3475516 10.1109/TIP.2021.3131941 10.24963/ijcai.2019/524 10.1609/aaai.v28i1.8950 10.1109/TCYB.2021.3049633 10.1609/aaai.v29i1.9598 10.1016/j.inffus.2019.09.005 10.1109/TCYB.2020.3035043 10.1109/CVPR.2015.7298657 10.1109/TNNLS.2019.2906867 10.1109/TCYB.2018.2869789 10.1609/aaai.v34i04.5867 10.1109/TPAMI.2022.3155499 10.1023/B:VISI.0000042993.50813.60 10.1109/TNNLS.2022.3192445 10.1109/ICDM.2019.00148 10.1109/TCYB.2014.2358564 10.1109/TAI.2021.3065894 10.1109/TPAMI.2018.2879108 10.1109/TPAMI.2018.2847335 10.1016/j.patrec.2009.09.011 10.24963/ijcai.2017/396 10.1109/CVPR46437.2021.01102 10.1016/j.neunet.2019.10.010 10.1109/ICCV.2015.185 10.24963/ijcai.2017/357 10.1109/TPAMI.2005.237 10.1016/j.patcog.2015.08.015 10.1109/TPAMI.2018.2852750 10.1109/TSMC.2018.2876202 10.1109/TCSVT.2022.3159371 10.1109/TKDE.2019.2903410 10.1109/TKDE.2019.2933511 10.1109/TKDE.2015.2503753 10.1016/j.inffus.2020.10.013 10.1007/s10115-016-0988-y 10.1109/TCYB.2017.2702343 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2023.3236698 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 16 |
ExternalDocumentID | 10_1109_TKDE_2023_3236698 10016684 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c403t-eef958991724c07d5c05346f96c1c48e3dea2854772ff32f9e69fc35f3f840e53 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 06:02:42 EDT 2025 Tue Jul 01 01:19:42 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Mon Aug 04 05:48:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-eef958991724c07d5c05346f96c1c48e3dea2854772ff32f9e69fc35f3f840e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3923-8828 0000-0001-5972-559X 0000-0003-3883-2024 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10016684 |
PQID | 2873584999 |
PQPubID | 85438 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TKDE_2023_3236698 crossref_citationtrail_10_1109_TKDE_2023_3236698 proquest_journals_2873584999 ieee_primary_10016684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref37 ref14 ref36 ref31 ref30 ng (ref34) 2002 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 li (ref35) 2012 liu (ref12) 2021 strehl (ref32) 2003; 3 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 liang (ref8) 2022; 34 ref28 ref27 ref29 nie (ref4) 2016 ref7 ref9 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref24 doi: 10.1109/TPAMI.2005.113 – ident: ref45 doi: 10.1109/TPAMI.2022.3197238 – ident: ref19 doi: 10.1145/3474085.3475516 – ident: ref20 doi: 10.1109/TIP.2021.3131941 – ident: ref11 doi: 10.24963/ijcai.2019/524 – ident: ref3 doi: 10.1609/aaai.v28i1.8950 – start-page: 789 year: 2012 ident: ref35 article-title: Segmentation using superpixels: A bipartite graph partitioning approach publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref31 doi: 10.1109/TCYB.2021.3049633 – ident: ref17 doi: 10.1609/aaai.v29i1.9598 – ident: ref39 doi: 10.1016/j.inffus.2019.09.005 – ident: ref38 doi: 10.1109/TCYB.2020.3035043 – start-page: 849 year: 2002 ident: ref34 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Int Conf Neural Inf Process – ident: ref40 doi: 10.1109/CVPR.2015.7298657 – ident: ref7 doi: 10.1109/TNNLS.2019.2906867 – ident: ref22 doi: 10.1109/TCYB.2018.2869789 – ident: ref18 doi: 10.1609/aaai.v34i04.5867 – ident: ref43 doi: 10.1109/TPAMI.2022.3155499 – ident: ref41 doi: 10.1023/B:VISI.0000042993.50813.60 – start-page: 1881 year: 2016 ident: ref4 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification publication-title: Proc Int Joint Conf Artif Intell – ident: ref23 doi: 10.1109/TNNLS.2022.3192445 – ident: ref5 doi: 10.1109/ICDM.2019.00148 – ident: ref15 doi: 10.1109/TCYB.2014.2358564 – ident: ref2 doi: 10.1109/TAI.2021.3065894 – ident: ref10 doi: 10.1109/TPAMI.2018.2879108 – ident: ref21 doi: 10.1109/TPAMI.2018.2847335 – volume: 34 start-page: 3418 year: 2022 ident: ref8 article-title: Multi-view spectral clustering with high-order optimal neighborhood laplacian matrix publication-title: IEEE Trans Knowl Data Eng – ident: ref1 doi: 10.1016/j.patrec.2009.09.011 – ident: ref33 doi: 10.24963/ijcai.2017/396 – ident: ref44 doi: 10.1109/CVPR46437.2021.01102 – ident: ref6 doi: 10.1016/j.neunet.2019.10.010 – volume: 3 start-page: 583 year: 2003 ident: ref32 article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – start-page: 6850 year: 2021 ident: ref12 article-title: One pass late fusion multi-view clustering publication-title: Proc Int Conf Mach Learn – ident: ref9 doi: 10.1109/ICCV.2015.185 – ident: ref42 doi: 10.24963/ijcai.2017/357 – ident: ref26 doi: 10.1109/TPAMI.2005.237 – ident: ref27 doi: 10.1016/j.patcog.2015.08.015 – ident: ref13 doi: 10.1109/TPAMI.2018.2852750 – ident: ref30 doi: 10.1109/TSMC.2018.2876202 – ident: ref14 doi: 10.1109/TCSVT.2022.3159371 – ident: ref16 doi: 10.1109/TKDE.2019.2903410 – ident: ref37 doi: 10.1109/TKDE.2019.2933511 – ident: ref28 doi: 10.1109/TKDE.2015.2503753 – ident: ref36 doi: 10.1016/j.inffus.2020.10.013 – ident: ref29 doi: 10.1007/s10115-016-0988-y – ident: ref25 doi: 10.1109/TCYB.2017.2702343 |
SSID | ssj0008781 |
Score | 2.6961966 |
Snippet | Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Bipartite graph Clustering Clustering algorithms Complexity Data clustering Data models Datasets Ensemble clustering Fuses Graph theory Hybrid early-late fusion Large-scale clustering Linear time Multi-view clustering Partitioning algorithms Scalability Tuning |
Title | Fast Multi-view Clustering via Ensembles: Towards Scalability, Superiority, and Simplicity |
URI | https://ieeexplore.ieee.org/document/10016684 https://www.proquest.com/docview/2873584999 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTu2hPKsuL_nQEyIhu3acmBuiu0KgcmGREJfIdsYS6jZbbRIk-PWMnSwCqlbNKVackaXxYz7PzDcA34wT9Pib-0SPCKCIPDLOSWrmXEvMhEHv0f1xJc9vxMVtetsnq4dcGEQMwWcY-9fgyy_ntvVXZceeL0jKXKzACiG3LlnrZdvNs1CRlOAFgSIust6FOUzU8fTy-zj2dcJjPuJSqvzNIRSqqvyxFYfzZbIGV8uRdWElP-O2MbF9ekfa-N9DX4fPvaXJTrupsQEfsNqEtWUVB9Yv6k349IqScAvuJrpuWEjLjbzXgJ3NWs-lQB_Zw71m46rGX2aG9QmbhojbmiTpWcf2_XjErltPnTxfhIauSnZ9H2LWqb0NN5Px9Ow86usvRFYkvIkQnUoJj5GNI2ySlamlFSukU9IOrciRl6h9AiYZ6M7xkVMolbM8ddwRbMSUf4HVal7hV2Bac52IcqQsGXDCZsoYkiyNGlok2eUAkqVCCtuTk_saGbMigJREFV6Hhddh0etwAIcvv_zumDn-1Xnb6-RVx04dA9hbqr3oF29dEIjkZJeR6bzzl9924aOX3uUk7sFqs2hxn4yTxhyESfkMoxPe-w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcKJQithTwAS6IpNnYcWIkDqjd1ZZte-lWqrgExxlLFUu2ahJQeRdehWdj7GRXBQS3SuQUK7aj2F_G89nzA_CisIIut3Mf6ZgIisiCwlpJxYxriako0J3oHh3Lyal4f5acrcH3lS8MInrjMwzdrT_LLxemdVtluy5ekJSZ6G0op3j1lRha_fZgn6bzZRyPR7O9SdAnEQiMiHgTIFqVEKmghVqYKC0TQ7AT0ipphkZkyEvUzouQtExreWwVSmUNTyy3xH3QJYUgCX-LFI0k7tzDVoI-S30OVCI0RMO4SPtD02GkdmfT_VHoMpOHPOZSquyXZc_ncflD-PsVbbwBP5Zj0RmyfArbpgjNt9_CRP63g3Uf7vW6NHvXgf8BrGG1CRvLPBWsF1ubcPda0MWH8GGs64Z5x-PAnYuwvXnrokXQQ_blXLNRVePnYo71GzbzNsU19aTnXTzzq9fspHXBoReXvqCrkp2ce6t8Km_B6Y187yNYrxYVPgamNdeRKGNlSEUVJlVFQT3LQg0NUt_lAKIlAHLTh193WUDmuadhkcodZnKHmbzHzABerZpcdLFH_lV5y2HgWsVu-gews4RZ3ounOieazEnzJHKw_Zdmz-H2ZHZ0mB8eHE-fwB33ps4DcwfWm8sWn5Iq1hTP_A_B4ONNg-onB_A7lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Multi-View+Clustering+Via+Ensembles%3A+Towards+Scalability%2C+Superiority%2C+and+Simplicity&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Huang%2C+Dong&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2023-11-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=11&rft.spage=11388&rft.epage=11402&rft_id=info:doi/10.1109%2FTKDE.2023.3236698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2023_3236698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |