Fast Multi-view Clustering via Ensembles: Towards Scalability, Superiority, and Simplicity
Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion,...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 11; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast m ulti-v i ew c lustering via e nsembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2023.3236698 |