Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa

Using in situ digital image correlation to obtain full-field measurements, we study the intermartensitic transformations in single-crystal NiFeGa. Full-field strain measurements identify the coexistence of modulated martensite phases during the first plateau of the multistage stress–strain curve at...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 56; no. 15; pp. 3791 - 3799
Main Authors Efstathiou, C., Sehitoglu, H., Carroll, J., Lambros, J., Maier, H.J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using in situ digital image correlation to obtain full-field measurements, we study the intermartensitic transformations in single-crystal NiFeGa. Full-field strain measurements identify the coexistence of modulated martensite phases during the first plateau of the multistage stress–strain curve at room temperature. At a higher temperature, the measurements indicate the bypassing of one of the modulated phases. Strain as high as 13% is measured as a result of the transformation to the intermediate monoclinic modulated and final tetragonal phase. Based on the full-field strain measurements, the phase fractions during the nucleation and the progression of the transformation are obtained. The evolution of the local strain and the phase fractions prove critical in explaining strain softening, hysteresis and other phenomena observed in the stress–strain curves.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2008.04.033