Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia

Greenhouse gas (GHG) emissions must be precisely estimated in order to predict climate change and achieve environmental sustainability in a country. GHG emissions are estimated using empirical models, but this is difficult since it requires a wide variety of data and specific national or regional pa...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 6; p. 3832
Main Authors Rahman, Muhammad Muhitur, Shafiullah, Md, Alam, Md Shafiul, Rahman, Mohammad Shahedur, Alsanad, Mohammed Ahmed, Islam, Mohammed Monirul, Islam, Md Kamrul, Rahman, Syed Masiur
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Greenhouse gas (GHG) emissions must be precisely estimated in order to predict climate change and achieve environmental sustainability in a country. GHG emissions are estimated using empirical models, but this is difficult since it requires a wide variety of data and specific national or regional parameters. In contrast, artificial intelligence (AI)-based methods for estimating GHG emissions are gaining popularity. While progress is evident in this field abroad, the application of an AI model to predict greenhouse gas emissions in Saudi Arabia is in its early stages. This study applied decision trees (DT) and their ensembles to model national GHG emissions. Three AI models, namely bagged decision tree, boosted decision tree, and gradient boosted decision tree, were investigated. Results of the DT models were compared with the feed forward neural network model. In this study, population, energy consumption, gross domestic product (GDP), urbanization, per capita income (PCI), foreign direct investment (FDI), and GHG emission information from 1970 to 2021 were used to construct a suitable dataset to train and validate the model. The developed model was used to predict Saudi Arabia’s national GHG emissions up to the year 2040. The results indicated that the bagged decision tree has the highest coefficient of determination (R2) performance on the testing dataset, with a value of 0.90. The same method also has the lowest root mean square error (0.84 GtCO2e) and mean absolute percentage error (0.29 GtCO2e), suggesting that it exhibited the best performance. The model predicted that GHG emissions in 2040 will range between 852 and 867 million tons of CO2 equivalent. In addition, Shapley analysis showed that the importance of input parameters can be ranked as urbanization rate, GDP, PCI, energy consumption, population, and FDI. The findings of this study will aid decision makers in understanding the complex relationships between the numerous drivers and the significance of diverse socioeconomic factors in defining national GHG inventories. The findings will enhance the tracking of national GHG emissions and facilitate the concentration of appropriate activities to mitigate climate change.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13063832