Effect of Respirator Resistance on Tolerant Capacity during Graded Load Exercise
Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The present study investigated the tolerant capacity of 8 individuals during incremental...
Saved in:
Published in | Journal of Huazhong University of Science and Technology. Medical sciences Vol. 32; no. 3; pp. 434 - 437 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Huazhong University of Science and Technology
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1672-0733 1993-1352 |
DOI | 10.1007/s11596-012-0075-x |
Cover
Loading…
Summary: | Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The present study investigated the tolerant capacity of 8 individuals during incremental work load. The 8 subjects were required to wear two matched respirators (respirators Ⅰ and Ⅱ which were designed to have different breathing resistances and the same dead space) respectively on separate days and then work to end points. Minute ventilation (VE), breathing frequency (BF), oxygen consumption (VO2) and heart rate (HR) were recorded during exercise, while tolerant time, response time and breathing discomfort were measured at the end of each test trial. The test variables were com-pared between the two respirators by using matched-pairs t-test. The results showed that the tolerant time was significantly reduced for the respiratorⅠwith higher level of breathing resistance when compared with its counterpart with lower breathing resistance (respirator Ⅱ) (P〈0.05). The same changes occurred for response time. Results also showed a significant increase in VE and BF for respirator Ⅰwearers when the work load was above 125 W. The O2 consumption was similar under the two breathing resistance conditions. These findings suggested that the respiratory resistance caused by self-contained breathing apparatus (SCBA) has an impact on the tolerant capacity of users. |
---|---|
Bibliography: | self-contained breathing apparatus breathing resistance respirator tolerant time 42-1679/R Man QIU, Sheng WANG( School of Public Health, PeKing University, Beijing 100191, China) Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The present study investigated the tolerant capacity of 8 individuals during incremental work load. The 8 subjects were required to wear two matched respirators (respirators Ⅰ and Ⅱ which were designed to have different breathing resistances and the same dead space) respectively on separate days and then work to end points. Minute ventilation (VE), breathing frequency (BF), oxygen consumption (VO2) and heart rate (HR) were recorded during exercise, while tolerant time, response time and breathing discomfort were measured at the end of each test trial. The test variables were com-pared between the two respirators by using matched-pairs t-test. The results showed that the tolerant time was significantly reduced for the respiratorⅠwith higher level of breathing resistance when compared with its counterpart with lower breathing resistance (respirator Ⅱ) (P〈0.05). The same changes occurred for response time. Results also showed a significant increase in VE and BF for respirator Ⅰwearers when the work load was above 125 W. The O2 consumption was similar under the two breathing resistance conditions. These findings suggested that the respiratory resistance caused by self-contained breathing apparatus (SCBA) has an impact on the tolerant capacity of users. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1672-0733 1993-1352 |
DOI: | 10.1007/s11596-012-0075-x |