Comprehensive numerical simulation of threshold-voltage transients in nitride memories

► We present a complete model to describe charge trap devices behavior. ► In this study any mathematical aspect regarding holes and electrons is detailed modeled. ► Experimental data coming from different TANOS and SONOS devices are correctly reproduced. This paper presents a comprehensive numerical...

Full description

Saved in:
Bibliographic Details
Published inSolid-state electronics Vol. 56; no. 1; pp. 23 - 30
Main Authors Mauri, Aurelio, Amoroso, Salvatore M., Monzio Compagnoni, Christian, Maconi, Alessandro, Spinelli, Alessandro S.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:► We present a complete model to describe charge trap devices behavior. ► In this study any mathematical aspect regarding holes and electrons is detailed modeled. ► Experimental data coming from different TANOS and SONOS devices are correctly reproduced. This paper presents a comprehensive numerical modeling for the threshold-voltage transients of nitride-based memory devices during programming, erasing and data retention. The developed numerical tool self-consistently solves the Poisson, continuity and trapping equations in the nitride layer using a drift-diffusion formalism. The continuity equation has been discretized using the Scharfetter–Gummel scheme and a modified Gummel-map has been optimized to ensure fully convergence of the equations. The numerical model is able to describe the memory device operation for different gate bias regimes, therefore addressing both the program/erase and the retention conditions. Finally, numerical results are shown to carefully reproduce experimental data on template devices with different gate stack compositions, validating the physical assumptions and making the model a valuable tool for nitride memories investigation and design.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0038-1101
1879-2405
DOI:10.1016/j.sse.2010.11.004