Multilayered Balanced Dual-Band Bandpass Filter Based on Magnetically Coupled Open-Loop Resonators with Intrinsic Common-Mode Rejection
A new dual-band balanced bandpass filter based on magnetically coupled open-loop resonators in multilayer technology is proposed in this paper. The lower differential passband, centered at the Global Positioning System (GPS) L1 frequency, 1.575 GHz, was created by means of two coupled resonators etc...
Saved in:
Published in | Applied sciences Vol. 10; no. 9; p. 3113 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A new dual-band balanced bandpass filter based on magnetically coupled open-loop resonators in multilayer technology is proposed in this paper. The lower differential passband, centered at the Global Positioning System (GPS) L1 frequency, 1.575 GHz, was created by means of two coupled resonators etched in the middle layer of the structure, while the upper differential passband, centered at a Wi-Fi frequency of 2.4 GHz, was generated by coupling two resonators on the top layer. Magnetic coupling was used to design both passbands, leading to an intrinsic common-mode rejection of 39 dB within the lower passband and 33 dB within the upper passband. Simulation and measurement results are provided to verify the usefulness of the proposed dual-band differential bandpass filter. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10093113 |