Fluorescent probe strategy for live cell distinction

Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers,...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 51; no. 5; pp. 1573 - 1591
Main Authors Liu, Xiao, Chang, Young-Tae
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes. This tutorial review outlines the concepts and mechanisms of different fluorescent probe strategies for live cell distinction, introduces their applications in cell-type discrimination, and discusses their advantages and challenges in this area.
AbstractList Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes. This tutorial review outlines the concepts and mechanisms of different fluorescent probe strategies for live cell distinction, introduces their applications in cell-type discrimination, and discusses their advantages and challenges in this area.
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Author Liu, Xiao
Chang, Young-Tae
AuthorAffiliation Department of Chemistry
Pohang University of Science and Technology
Center for Self-assembly and Complexity
Institute for Basic Science (IBS)
AuthorAffiliation_xml – name: Center for Self-assembly and Complexity
– name: Department of Chemistry
– name: Pohang University of Science and Technology
– name: Institute for Basic Science (IBS)
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
– sequence: 2
  givenname: Young-Tae
  surname: Chang
  fullname: Chang, Young-Tae
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35136889$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9LwzAUB_AgE_dDL96VghcRqnl5adoeZToVBh7Uc0nT19HRtTNphf33Zm5O8JRAPjy--b4xGzRtQ4ydA78FjuldAcZxjkmyOGIjkIqHMpZywEYcuQo5BzFkY-eW_gaxEidsiBGgSpJ0xOSs7ltLzlDTBWvb5hS4zuqOFpugbG1QV18UGKrroKhcVzWmq9rmlB2XunZ0tj8n7GP2-D59DuevTy_T-3loJMcuVEWheYmRyVVipJZFXlJukEvQnLRSXClCMiZFQSAQcgQFgFpBItIoFjhh17u5PthnT67LVpXbhtENtb3LhBIxIEKcenr1jy7b3jY-nVf-r5FMFPfqZqeMbZ2zVGZrW6203WTAs22X2QNM3366fPL4cj-yz1dUHOhveR5c7IB15vD6twz8BrlZeKo
CitedBy_id crossref_primary_10_1039_D4MH00190G
crossref_primary_10_3390_molecules29112521
crossref_primary_10_1016_j_talanta_2024_125734
crossref_primary_10_1039_D3SC00563A
crossref_primary_10_1021_acssensors_3c01439
crossref_primary_10_1021_acs_analchem_2c05218
crossref_primary_10_1002_anie_202202095
crossref_primary_10_3390_cells11182836
crossref_primary_10_1016_j_cclet_2023_108913
crossref_primary_10_1016_j_bpj_2024_03_023
crossref_primary_10_3390_pharmaceutics16030424
crossref_primary_10_1016_j_snb_2023_134555
crossref_primary_10_1002_cbic_202300761
crossref_primary_10_1016_j_saa_2023_123233
crossref_primary_10_1038_s41467_022_33526_z
crossref_primary_10_1039_D2CC06238K
crossref_primary_10_1021_jacs_3c13095
crossref_primary_10_1016_j_jhazmat_2023_132771
crossref_primary_10_1002_adma_202402806
crossref_primary_10_1007_s12039_022_02129_y
crossref_primary_10_1016_j_dyepig_2023_111089
crossref_primary_10_1002_asia_202201291
crossref_primary_10_1016_j_mtbio_2022_100332
crossref_primary_10_1039_D3AN01067H
crossref_primary_10_1039_D3CC02501B
crossref_primary_10_1002_cptc_202300198
crossref_primary_10_1016_j_talanta_2024_125679
crossref_primary_10_1016_j_surfin_2022_102496
crossref_primary_10_1039_D4TB00590B
crossref_primary_10_1021_acs_analchem_2c05713
crossref_primary_10_1016_j_ccr_2023_215562
crossref_primary_10_1016_j_nxmate_2024_100226
crossref_primary_10_1016_j_dyepig_2023_111703
crossref_primary_10_1016_j_ccr_2023_215321
crossref_primary_10_1016_j_dyepig_2023_111797
crossref_primary_10_1016_j_talo_2023_100273
crossref_primary_10_1016_j_foodchem_2022_135381
crossref_primary_10_1016_j_trac_2023_117273
crossref_primary_10_1039_D3NJ05045A
crossref_primary_10_1007_s10895_023_03526_3
crossref_primary_10_1016_j_saa_2023_123730
crossref_primary_10_1021_acs_analchem_3c04099
crossref_primary_10_1021_cbe_3c00085
crossref_primary_10_1016_j_cclet_2023_108577
crossref_primary_10_1002_bio_4697
crossref_primary_10_1021_acsmedchemlett_4c00033
crossref_primary_10_3390_chemosensors11050310
crossref_primary_10_1016_j_mtchem_2023_101806
crossref_primary_10_1016_j_ccr_2022_214813
crossref_primary_10_1016_j_trac_2023_117461
crossref_primary_10_1002_ange_202202095
crossref_primary_10_1016_j_saa_2023_123207
crossref_primary_10_1002_cbic_202300035
crossref_primary_10_1016_j_snb_2023_134345
Cites_doi 10.1021/jacs.9b06068
10.1021/jacs.9b04412
10.1038/ncomms7463
10.1039/C7SC05407F
10.1002/anie.201206749
10.1021/jacs.5b11357
10.1002/cbic.201600490
10.1039/c0cs00172d
10.1126/science.1172278
10.1021/acscentsci.0c01189
10.1016/j.bbrc.2020.04.153
10.1038/s41467-019-08990-9
10.1002/anie.201712920
10.1002/anie.201900465
10.1038/nmat3074
10.1002/anie.202015116
10.1021/ja5115776
10.1038/s41467-021-23462-9
10.1021/ja9011657
10.1002/anie.200901175
10.1073/pnas.1200817109
10.1039/c2cc31662e
10.1038/nrd4626
10.1126/scitranslmed.aam6310
10.1021/acscentsci.7b00262
10.1021/ar400285f
10.1016/j.coche.2012.11.002
10.1186/1479-7364-3-3-281
10.1016/j.biomaterials.2018.07.007
10.1039/C7CS00018A
10.1073/pnas.1213569110
10.1002/anie.201903058
10.1039/C4CC02974G
10.1038/s41467-020-14985-8
10.1002/stem.613
10.1002/0471142735.ima04as80
10.1021/acsami.8b11102
10.1021/jacs.1c00944
10.1038/s41557-019-0217-x
10.1016/j.tips.2017.01.003
10.1021/jacs.6b12122
10.1002/anie.200604364
10.1039/C8CC05544K
10.1021/acssensors.9b01951
10.1038/nprot.2006.458
10.1038/s41578-021-00328-6
10.1038/s41467-018-05075-x
10.1038/nrd3141
10.1016/S0960-894X(02)00339-6
10.1523/JNEUROSCI.4177-08.2009
10.1016/j.bmcl.2015.06.037
10.1021/acs.accounts.9b00253
10.1002/ajh.23387
10.1016/j.celrep.2014.02.006
10.1039/C9BM00152B
10.1021/jacs.9b11173
10.1038/ncomms4662
10.1021/acscentsci.8b00313
10.1007/s00125-020-05196-3
10.1002/anie.201002463
10.1002/anie.201902537
10.1021/jacs.0c00659
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1cs00388g
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 1591
ExternalDocumentID 10_1039_D1CS00388G
35136889
d1cs00388g
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
XOL
---
-DZ
-JG
-~X
0R~
53G
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
APEMP
CGR
CUY
CVF
ECM
EIF
GGIMP
H13
HZ~
NPM
RAOCF
~02
AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-6dda0f35cb68c4a4dbfebc3041a0ea66066e3ecc932e1231b316113a618295723
ISSN 0306-0012
IngestDate Thu Oct 24 22:36:21 EDT 2024
Thu Oct 10 20:05:40 EDT 2024
Fri Aug 23 01:33:17 EDT 2024
Sat Sep 28 08:22:24 EDT 2024
Tue Mar 08 04:21:01 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-6dda0f35cb68c4a4dbfebc3041a0ea66066e3ecc932e1231b316113a618295723
Notes Xiao Liu graduated from Soochow University (China) with a BSc in 2017. He joined Prof. Young-Tae Chang's research group at the National University of Singapore in 2016 and moved to Pohang University of Science and Technology (POSTECH, Korea) as a graduate student in 2017. His research interests are the development of new fluorescent molecular rotors for bioimaging.
Young-Tae Chang studied chemistry at Pohang University of Science and Technology (POSTECH, Korea) and received his BS in 1991 and PhD in 1997 (Advisor: Prof. Sung-Kee Chung). He did his postdoctoral work with Prof. Peter Schultz at UC Berkeley and The Scripps Research Institute. In 2000, he started his academic career at New York University and in 2007, he moved to the National University of Singapore and Singapore Bioimaging Consortium. In 2017, he moved back to POSTECH as a faculty member and associate director of the Center for Self-assembly and Complexity, IBS. He has published more than 370 scientific papers and filed 50 patents so far. The full list is available at
.
http://ytchang.postech.ac.kr
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-1927-3688
0000-0001-7476-2479
PMID 35136889
PQID 2636854860
PQPubID 2047503
PageCount 19
ParticipantIDs proquest_miscellaneous_2627133179
pubmed_primary_35136889
rsc_primary_d1cs00388g
proquest_journals_2636854860
crossref_primary_10_1039_D1CS00388G
PublicationCentury 2000
PublicationDate 2022-03-07
PublicationDateYYYYMMDD 2022-03-07
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Im (D1CS00388G/cit44/1) 2010; 49
Choi (D1CS00388G/cit6/1) 2019; 52
Eriksen (D1CS00388G/cit28/1) 2009; 29
Lee (D1CS00388G/cit16/1) 2018; 57
Gubernator (D1CS00388G/cit35/1) 2009; 324
Balber (D1CS00388G/cit50/1) 2011; 29
Kwon (D1CS00388G/cit20/1) 2019; 58
Su (D1CS00388G/cit59/1) 2017; 46
Kwon (D1CS00388G/cit22/1) 2018; 54
Hsu (D1CS00388G/cit58/1) 2019; 11
Agrawalla (D1CS00388G/cit34/1) 2017; 139
Guidotti (D1CS00388G/cit3/1) 2017; 38
Hawley (D1CS00388G/cit45/1) 2013; 88
Yun (D1CS00388G/cit5/1) 2014; 47
Yang (D1CS00388G/cit19/1) 2002; 12
Cheng (D1CS00388G/cit47/1) 2021; 6
Agrawalla (D1CS00388G/cit10/1) 2015; 137
He (D1CS00388G/cit48/1) 2020; 142
Kang (D1CS00388G/cit11/1) 2020; 142
Kwon (D1CS00388G/cit24/1) 2019; 7
Moede (D1CS00388G/cit8/1) 2020; 63
Kim (D1CS00388G/cit25/1) 2020; 527
Zhang (D1CS00388G/cit41/1) 2018; 9
Liu (D1CS00388G/cit60/1) 2020; 5
Kang (D1CS00388G/cit4/1) 2011; 40
Lee (D1CS00388G/cit21/1) 2012; 48
Tian (D1CS00388G/cit33/1) 2009; 48
Kamariza (D1CS00388G/cit56/1) 2018; 10
Cho (D1CS00388G/cit39/1) 2018; 180
Benson (D1CS00388G/cit40/1) 2019; 58
Anorma (D1CS00388G/cit52/1) 2018; 4
Dunn (D1CS00388G/cit36/1) 2018; 9
Kwon (D1CS00388G/cit7/1) 2021; 143
Fernandez (D1CS00388G/cit62/1) 2017; 3
Beare (D1CS00388G/cit1/1) 2008; 80
Fujita (D1CS00388G/cit54/1) 2020; 6
Kim (D1CS00388G/cit43/1) 2016; 17
Ning (D1CS00388G/cit30/1) 2011; 10
Minn (D1CS00388G/cit51/1) 2014; 5
Park (D1CS00388G/cit32/1) 2007; 46
Kaplaneris (D1CS00388G/cit61/1) 2021; 12
Lin (D1CS00388G/cit26/1) 2015; 14
Zlitni (D1CS00388G/cit31/1) 2020; 11
Hirata (D1CS00388G/cit42/1) 2014; 6
Tian (D1CS00388G/cit12/1) 2018; 10
Keefe (D1CS00388G/cit2/1) 2010; 9
Lee (D1CS00388G/cit9/1) 2009; 131
Kuru (D1CS00388G/cit57/1) 2012; 51
Asanuma (D1CS00388G/cit53/1) 2015; 6
Yun (D1CS00388G/cit15/1) 2014; 50
Kim (D1CS00388G/cit17/1) 2019; 141
Yun (D1CS00388G/cit14/1) 2012; 109
Zhu (D1CS00388G/cit13/1) 2013; 2
Vasiliou (D1CS00388G/cit27/1) 2009; 3
Kim (D1CS00388G/cit46/1) 2019; 58
Kawatani (D1CS00388G/cit55/1) 2019; 141
Schmid (D1CS00388G/cit23/1) 2007; 2
Rodriguez (D1CS00388G/cit29/1) 2013; 110
Chandran (D1CS00388G/cit38/1) 2015; 25
Zhang (D1CS00388G/cit49/1) 2021; 60
Kim (D1CS00388G/cit18/1) 2016; 138
Park (D1CS00388G/cit37/1) 2019; 10
References_xml – volume: 141
  start-page: 14673
  year: 2019
  ident: D1CS00388G/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06068
  contributor:
    fullname: Kim
– volume: 141
  start-page: 10409
  year: 2019
  ident: D1CS00388G/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04412
  contributor:
    fullname: Kawatani
– volume: 6
  start-page: 6463
  year: 2015
  ident: D1CS00388G/cit53/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7463
  contributor:
    fullname: Asanuma
– volume: 9
  start-page: 3209
  year: 2018
  ident: D1CS00388G/cit41/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05407F
  contributor:
    fullname: Zhang
– volume: 51
  start-page: 12519
  year: 2012
  ident: D1CS00388G/cit57/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206749
  contributor:
    fullname: Kuru
– volume: 138
  start-page: 402
  year: 2016
  ident: D1CS00388G/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11357
  contributor:
    fullname: Kim
– volume: 17
  start-page: 2118
  year: 2016
  ident: D1CS00388G/cit43/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201600490
  contributor:
    fullname: Kim
– volume: 40
  start-page: 3613
  year: 2011
  ident: D1CS00388G/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00172d
  contributor:
    fullname: Kang
– volume: 324
  start-page: 1441
  year: 2009
  ident: D1CS00388G/cit35/1
  publication-title: Science
  doi: 10.1126/science.1172278
  contributor:
    fullname: Gubernator
– volume: 6
  start-page: 2217
  year: 2020
  ident: D1CS00388G/cit54/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c01189
  contributor:
    fullname: Fujita
– volume: 527
  start-page: 646
  year: 2020
  ident: D1CS00388G/cit25/1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.04.153
  contributor:
    fullname: Kim
– volume: 10
  start-page: 1111
  year: 2019
  ident: D1CS00388G/cit37/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08990-9
  contributor:
    fullname: Park
– volume: 57
  start-page: 2851
  year: 2018
  ident: D1CS00388G/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712920
  contributor:
    fullname: Lee
– volume: 58
  start-page: 6911
  year: 2019
  ident: D1CS00388G/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900465
  contributor:
    fullname: Benson
– volume: 10
  start-page: 602
  year: 2011
  ident: D1CS00388G/cit30/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3074
  contributor:
    fullname: Ning
– volume: 60
  start-page: 5921
  year: 2021
  ident: D1CS00388G/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202015116
  contributor:
    fullname: Zhang
– volume: 137
  start-page: 5355
  year: 2015
  ident: D1CS00388G/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5115776
  contributor:
    fullname: Agrawalla
– volume: 12
  start-page: 3389
  year: 2021
  ident: D1CS00388G/cit61/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23462-9
  contributor:
    fullname: Kaplaneris
– volume: 131
  start-page: 10077
  year: 2009
  ident: D1CS00388G/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9011657
  contributor:
    fullname: Lee
– volume: 48
  start-page: 8027
  year: 2009
  ident: D1CS00388G/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901175
  contributor:
    fullname: Tian
– volume: 109
  start-page: 10214
  year: 2012
  ident: D1CS00388G/cit14/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1200817109
  contributor:
    fullname: Yun
– volume: 48
  start-page: 6681
  year: 2012
  ident: D1CS00388G/cit21/1
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31662e
  contributor:
    fullname: Lee
– volume: 14
  start-page: 543
  year: 2015
  ident: D1CS00388G/cit26/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd4626
  contributor:
    fullname: Lin
– volume: 10
  start-page: eaam6310
  year: 2018
  ident: D1CS00388G/cit56/1
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aam6310
  contributor:
    fullname: Kamariza
– volume: 3
  start-page: 995
  year: 2017
  ident: D1CS00388G/cit62/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00262
  contributor:
    fullname: Fernandez
– volume: 47
  start-page: 1277
  year: 2014
  ident: D1CS00388G/cit5/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400285f
  contributor:
    fullname: Yun
– volume: 2
  start-page: 3
  year: 2013
  ident: D1CS00388G/cit13/1
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2012.11.002
  contributor:
    fullname: Zhu
– volume: 3
  start-page: 281
  year: 2009
  ident: D1CS00388G/cit27/1
  publication-title: Hum. Genomics
  doi: 10.1186/1479-7364-3-3-281
  contributor:
    fullname: Vasiliou
– volume: 180
  start-page: 12
  year: 2018
  ident: D1CS00388G/cit39/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.07.007
  contributor:
    fullname: Cho
– volume: 46
  start-page: 4833
  year: 2017
  ident: D1CS00388G/cit59/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00018A
  contributor:
    fullname: Su
– volume: 110
  start-page: 870
  year: 2013
  ident: D1CS00388G/cit29/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1213569110
  contributor:
    fullname: Rodriguez
– volume: 58
  start-page: 7972
  year: 2019
  ident: D1CS00388G/cit46/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903058
  contributor:
    fullname: Kim
– volume: 50
  start-page: 7492
  year: 2014
  ident: D1CS00388G/cit15/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02974G
  contributor:
    fullname: Yun
– volume: 11
  start-page: 1250
  year: 2020
  ident: D1CS00388G/cit31/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14985-8
  contributor:
    fullname: Zlitni
– volume: 29
  start-page: 570
  year: 2011
  ident: D1CS00388G/cit50/1
  publication-title: Stem Cells
  doi: 10.1002/stem.613
  contributor:
    fullname: Balber
– volume: 80
  start-page: A.4A.1
  year: 2008
  ident: D1CS00388G/cit1/1
  publication-title: Curr. Protoc. Immunol.
  doi: 10.1002/0471142735.ima04as80
  contributor:
    fullname: Beare
– volume: 10
  start-page: 31959
  year: 2018
  ident: D1CS00388G/cit12/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11102
  contributor:
    fullname: Tian
– volume: 143
  start-page: 5836
  year: 2021
  ident: D1CS00388G/cit7/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00944
  contributor:
    fullname: Kwon
– volume: 11
  start-page: 335
  year: 2019
  ident: D1CS00388G/cit58/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0217-x
  contributor:
    fullname: Hsu
– volume: 38
  start-page: 406
  year: 2017
  ident: D1CS00388G/cit3/1
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2017.01.003
  contributor:
    fullname: Guidotti
– volume: 139
  start-page: 3480
  year: 2017
  ident: D1CS00388G/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12122
  contributor:
    fullname: Agrawalla
– volume: 46
  start-page: 2018
  year: 2007
  ident: D1CS00388G/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604364
  contributor:
    fullname: Park
– volume: 54
  start-page: 11865
  year: 2018
  ident: D1CS00388G/cit22/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05544K
  contributor:
    fullname: Kwon
– volume: 5
  start-page: 731
  year: 2020
  ident: D1CS00388G/cit60/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01951
  contributor:
    fullname: Liu
– volume: 2
  start-page: 187
  year: 2007
  ident: D1CS00388G/cit23/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.458
  contributor:
    fullname: Schmid
– volume: 6
  start-page: 1095
  year: 2021
  ident: D1CS00388G/cit47/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00328-6
  contributor:
    fullname: Cheng
– volume: 9
  start-page: 2838
  year: 2018
  ident: D1CS00388G/cit36/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05075-x
  contributor:
    fullname: Dunn
– volume: 9
  start-page: 537
  year: 2010
  ident: D1CS00388G/cit2/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd3141
  contributor:
    fullname: Keefe
– volume: 12
  start-page: 2175
  year: 2002
  ident: D1CS00388G/cit19/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/S0960-894X(02)00339-6
  contributor:
    fullname: Yang
– volume: 29
  start-page: 6794
  year: 2009
  ident: D1CS00388G/cit28/1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4177-08.2009
  contributor:
    fullname: Eriksen
– volume: 25
  start-page: 4862
  year: 2015
  ident: D1CS00388G/cit38/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2015.06.037
  contributor:
    fullname: Chandran
– volume: 52
  start-page: 3097
  year: 2019
  ident: D1CS00388G/cit6/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00253
  contributor:
    fullname: Choi
– volume: 88
  start-page: 265
  year: 2013
  ident: D1CS00388G/cit45/1
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.23387
  contributor:
    fullname: Hawley
– volume: 6
  start-page: 1165
  year: 2014
  ident: D1CS00388G/cit42/1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.02.006
  contributor:
    fullname: Hirata
– volume: 7
  start-page: 3594
  year: 2019
  ident: D1CS00388G/cit24/1
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00152B
  contributor:
    fullname: Kwon
– volume: 142
  start-page: 3430
  year: 2020
  ident: D1CS00388G/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11173
  contributor:
    fullname: Kang
– volume: 5
  start-page: 3662
  year: 2014
  ident: D1CS00388G/cit51/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4662
  contributor:
    fullname: Minn
– volume: 4
  start-page: 1045
  year: 2018
  ident: D1CS00388G/cit52/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00313
  contributor:
    fullname: Anorma
– volume: 63
  start-page: 2064
  year: 2020
  ident: D1CS00388G/cit8/1
  publication-title: Diabetologia
  doi: 10.1007/s00125-020-05196-3
  contributor:
    fullname: Moede
– volume: 49
  start-page: 7497
  year: 2010
  ident: D1CS00388G/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002463
  contributor:
    fullname: Im
– volume: 58
  start-page: 8426
  year: 2019
  ident: D1CS00388G/cit20/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902537
  contributor:
    fullname: Kwon
– volume: 142
  start-page: 7075
  year: 2020
  ident: D1CS00388G/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00659
  contributor:
    fullname: He
SSID ssj0011762
Score 2.6297874
SecondaryResourceType review_article
Snippet Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 1573
SubjectTerms Antibodies
Biomarkers
Biomolecules
Carbohydrates
Discrimination
Fluorescent Dyes - chemistry
Fluorescent indicators
Lipids
Metabolism
Proteins
Selective surfaces
Title Fluorescent probe strategy for live cell distinction
URI https://www.ncbi.nlm.nih.gov/pubmed/35136889
https://www.proquest.com/docview/2636854860
https://search.proquest.com/docview/2627133179
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKHOBS0ZbHAkVB5WqIYzuPI1qgUJVeWKS9RY7tRSutstWSvfTXdya2sylwoFysyNkkm_mc8Yxn_A0hp4UoWB4bTYW2iopJkdI8l5ZOYO6wYG4Y1pYDuvuV3jyIH2M5DuXd_e6SpjrTf17dV_IeVKEPcMVdsv-BbHdT6IBjwBdaQBjaN2F8PVvOF46PCROtKmSLbakfXBbmDLOCcGUewzDNtNYdCIGaILAFhNxNz03aZelMlwjBeKrmvTQApx1aNUFHyvbXDcDlxMSprKdeOK4lxD6J2Tr1J9KYiswxMgb96Alhp_0IdKvsmHRVSPzECYYRe1Upxxw5TS_Z8B7jkPn31dQTwu3PZqQuT7CNkPOiXF27RjYSUCmgyzYurka3P7uIEYwpHzFybxWoaHlxvrr6X-PjhUcB9sUi1H1p7YvRNvnoHYPowqH8iXyw9WeyOQz1-L4Q0UM7atGOAtoRoB0h2hGiHfXQ3iEP11ej4Q31NS-oFjFvaGqMiidc6irNtVDCVBNbaR4LpmKrUnQ3LYfPDsxuC0YHqziY7IyrFPzEQmYJ3yXr9by2-yTKbK6szAw0AouSKZNIMO5MzgVyFMkB-RaEUf521CblS4EPyFGQU-mH_lOZpFi3AOuXDchJdxrkgW-pajtf4m8SXAABhT8ge06-3WO4ZHCDHM7sgsC7bsP0U_vUx4M3_bdDsrUa2UdkvVks7VewEZvq2A-Pv0A5Yfk
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescent+probe+strategy+for+live+cell+distinction&rft.jtitle=Chemical+Society+reviews&rft.au=Liu%2C+Xiao&rft.au=Chang%2C+Young-Tae&rft.date=2022-03-07&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=5&rft.spage=1573&rft.epage=1591&rft_id=info:doi/10.1039%2FD1CS00388G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CS00388G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon