Fluorescent probe strategy for live cell distinction
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers,...
Saved in:
Published in | Chemical Society reviews Vol. 51; no. 5; pp. 1573 - 1591 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating
via
transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
This tutorial review outlines the concepts and mechanisms of different fluorescent probe strategies for live cell distinction, introduces their applications in cell-type discrimination, and discusses their advantages and challenges in this area. |
---|---|
AbstractList | Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating
transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes. Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes. This tutorial review outlines the concepts and mechanisms of different fluorescent probe strategies for live cell distinction, introduces their applications in cell-type discrimination, and discusses their advantages and challenges in this area. Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes. Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes. |
Author | Liu, Xiao Chang, Young-Tae |
AuthorAffiliation | Department of Chemistry Pohang University of Science and Technology Center for Self-assembly and Complexity Institute for Basic Science (IBS) |
AuthorAffiliation_xml | – name: Center for Self-assembly and Complexity – name: Department of Chemistry – name: Pohang University of Science and Technology – name: Institute for Basic Science (IBS) |
Author_xml | – sequence: 1 givenname: Xiao surname: Liu fullname: Liu, Xiao – sequence: 2 givenname: Young-Tae surname: Chang fullname: Chang, Young-Tae |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35136889$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c9LwzAUB_AgE_dDL96VghcRqnl5adoeZToVBh7Uc0nT19HRtTNphf33Zm5O8JRAPjy--b4xGzRtQ4ydA78FjuldAcZxjkmyOGIjkIqHMpZywEYcuQo5BzFkY-eW_gaxEidsiBGgSpJ0xOSs7ltLzlDTBWvb5hS4zuqOFpugbG1QV18UGKrroKhcVzWmq9rmlB2XunZ0tj8n7GP2-D59DuevTy_T-3loJMcuVEWheYmRyVVipJZFXlJukEvQnLRSXClCMiZFQSAQcgQFgFpBItIoFjhh17u5PthnT67LVpXbhtENtb3LhBIxIEKcenr1jy7b3jY-nVf-r5FMFPfqZqeMbZ2zVGZrW6203WTAs22X2QNM3366fPL4cj-yz1dUHOhveR5c7IB15vD6twz8BrlZeKo |
CitedBy_id | crossref_primary_10_1039_D4MH00190G crossref_primary_10_3390_molecules29112521 crossref_primary_10_1016_j_talanta_2024_125734 crossref_primary_10_1039_D3SC00563A crossref_primary_10_1021_acssensors_3c01439 crossref_primary_10_1021_acs_analchem_2c05218 crossref_primary_10_1002_anie_202202095 crossref_primary_10_3390_cells11182836 crossref_primary_10_1016_j_cclet_2023_108913 crossref_primary_10_1016_j_bpj_2024_03_023 crossref_primary_10_3390_pharmaceutics16030424 crossref_primary_10_1016_j_snb_2023_134555 crossref_primary_10_1002_cbic_202300761 crossref_primary_10_1016_j_saa_2023_123233 crossref_primary_10_1038_s41467_022_33526_z crossref_primary_10_1039_D2CC06238K crossref_primary_10_1021_jacs_3c13095 crossref_primary_10_1016_j_jhazmat_2023_132771 crossref_primary_10_1002_adma_202402806 crossref_primary_10_1007_s12039_022_02129_y crossref_primary_10_1016_j_dyepig_2023_111089 crossref_primary_10_1002_asia_202201291 crossref_primary_10_1016_j_mtbio_2022_100332 crossref_primary_10_1039_D3AN01067H crossref_primary_10_1039_D3CC02501B crossref_primary_10_1002_cptc_202300198 crossref_primary_10_1016_j_talanta_2024_125679 crossref_primary_10_1016_j_surfin_2022_102496 crossref_primary_10_1039_D4TB00590B crossref_primary_10_1021_acs_analchem_2c05713 crossref_primary_10_1016_j_ccr_2023_215562 crossref_primary_10_1016_j_nxmate_2024_100226 crossref_primary_10_1016_j_dyepig_2023_111703 crossref_primary_10_1016_j_ccr_2023_215321 crossref_primary_10_1016_j_dyepig_2023_111797 crossref_primary_10_1016_j_talo_2023_100273 crossref_primary_10_1016_j_foodchem_2022_135381 crossref_primary_10_1016_j_trac_2023_117273 crossref_primary_10_1039_D3NJ05045A crossref_primary_10_1007_s10895_023_03526_3 crossref_primary_10_1016_j_saa_2023_123730 crossref_primary_10_1021_acs_analchem_3c04099 crossref_primary_10_1021_cbe_3c00085 crossref_primary_10_1016_j_cclet_2023_108577 crossref_primary_10_1002_bio_4697 crossref_primary_10_1021_acsmedchemlett_4c00033 crossref_primary_10_3390_chemosensors11050310 crossref_primary_10_1016_j_mtchem_2023_101806 crossref_primary_10_1016_j_ccr_2022_214813 crossref_primary_10_1016_j_trac_2023_117461 crossref_primary_10_1002_ange_202202095 crossref_primary_10_1016_j_saa_2023_123207 crossref_primary_10_1002_cbic_202300035 crossref_primary_10_1016_j_snb_2023_134345 |
Cites_doi | 10.1021/jacs.9b06068 10.1021/jacs.9b04412 10.1038/ncomms7463 10.1039/C7SC05407F 10.1002/anie.201206749 10.1021/jacs.5b11357 10.1002/cbic.201600490 10.1039/c0cs00172d 10.1126/science.1172278 10.1021/acscentsci.0c01189 10.1016/j.bbrc.2020.04.153 10.1038/s41467-019-08990-9 10.1002/anie.201712920 10.1002/anie.201900465 10.1038/nmat3074 10.1002/anie.202015116 10.1021/ja5115776 10.1038/s41467-021-23462-9 10.1021/ja9011657 10.1002/anie.200901175 10.1073/pnas.1200817109 10.1039/c2cc31662e 10.1038/nrd4626 10.1126/scitranslmed.aam6310 10.1021/acscentsci.7b00262 10.1021/ar400285f 10.1016/j.coche.2012.11.002 10.1186/1479-7364-3-3-281 10.1016/j.biomaterials.2018.07.007 10.1039/C7CS00018A 10.1073/pnas.1213569110 10.1002/anie.201903058 10.1039/C4CC02974G 10.1038/s41467-020-14985-8 10.1002/stem.613 10.1002/0471142735.ima04as80 10.1021/acsami.8b11102 10.1021/jacs.1c00944 10.1038/s41557-019-0217-x 10.1016/j.tips.2017.01.003 10.1021/jacs.6b12122 10.1002/anie.200604364 10.1039/C8CC05544K 10.1021/acssensors.9b01951 10.1038/nprot.2006.458 10.1038/s41578-021-00328-6 10.1038/s41467-018-05075-x 10.1038/nrd3141 10.1016/S0960-894X(02)00339-6 10.1523/JNEUROSCI.4177-08.2009 10.1016/j.bmcl.2015.06.037 10.1021/acs.accounts.9b00253 10.1002/ajh.23387 10.1016/j.celrep.2014.02.006 10.1039/C9BM00152B 10.1021/jacs.9b11173 10.1038/ncomms4662 10.1021/acscentsci.8b00313 10.1007/s00125-020-05196-3 10.1002/anie.201002463 10.1002/anie.201902537 10.1021/jacs.0c00659 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d1cs00388g |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 1591 |
ExternalDocumentID | 10_1039_D1CS00388G 35136889 d1cs00388g |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X XOL --- -DZ -JG -~X 0R~ 53G 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AGRSR AHGCF APEMP CGR CUY CVF ECM EIF GGIMP H13 HZ~ NPM RAOCF ~02 AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-6dda0f35cb68c4a4dbfebc3041a0ea66066e3ecc932e1231b316113a618295723 |
ISSN | 0306-0012 |
IngestDate | Thu Oct 24 22:36:21 EDT 2024 Thu Oct 10 20:05:40 EDT 2024 Fri Aug 23 01:33:17 EDT 2024 Sat Sep 28 08:22:24 EDT 2024 Tue Mar 08 04:21:01 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-6dda0f35cb68c4a4dbfebc3041a0ea66066e3ecc932e1231b316113a618295723 |
Notes | Xiao Liu graduated from Soochow University (China) with a BSc in 2017. He joined Prof. Young-Tae Chang's research group at the National University of Singapore in 2016 and moved to Pohang University of Science and Technology (POSTECH, Korea) as a graduate student in 2017. His research interests are the development of new fluorescent molecular rotors for bioimaging. Young-Tae Chang studied chemistry at Pohang University of Science and Technology (POSTECH, Korea) and received his BS in 1991 and PhD in 1997 (Advisor: Prof. Sung-Kee Chung). He did his postdoctoral work with Prof. Peter Schultz at UC Berkeley and The Scripps Research Institute. In 2000, he started his academic career at New York University and in 2007, he moved to the National University of Singapore and Singapore Bioimaging Consortium. In 2017, he moved back to POSTECH as a faculty member and associate director of the Center for Self-assembly and Complexity, IBS. He has published more than 370 scientific papers and filed 50 patents so far. The full list is available at . http://ytchang.postech.ac.kr ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-1927-3688 0000-0001-7476-2479 |
PMID | 35136889 |
PQID | 2636854860 |
PQPubID | 2047503 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2627133179 pubmed_primary_35136889 rsc_primary_d1cs00388g proquest_journals_2636854860 crossref_primary_10_1039_D1CS00388G |
PublicationCentury | 2000 |
PublicationDate | 2022-03-07 |
PublicationDateYYYYMMDD | 2022-03-07 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Im (D1CS00388G/cit44/1) 2010; 49 Choi (D1CS00388G/cit6/1) 2019; 52 Eriksen (D1CS00388G/cit28/1) 2009; 29 Lee (D1CS00388G/cit16/1) 2018; 57 Gubernator (D1CS00388G/cit35/1) 2009; 324 Balber (D1CS00388G/cit50/1) 2011; 29 Kwon (D1CS00388G/cit20/1) 2019; 58 Su (D1CS00388G/cit59/1) 2017; 46 Kwon (D1CS00388G/cit22/1) 2018; 54 Hsu (D1CS00388G/cit58/1) 2019; 11 Agrawalla (D1CS00388G/cit34/1) 2017; 139 Guidotti (D1CS00388G/cit3/1) 2017; 38 Hawley (D1CS00388G/cit45/1) 2013; 88 Yun (D1CS00388G/cit5/1) 2014; 47 Yang (D1CS00388G/cit19/1) 2002; 12 Cheng (D1CS00388G/cit47/1) 2021; 6 Agrawalla (D1CS00388G/cit10/1) 2015; 137 He (D1CS00388G/cit48/1) 2020; 142 Kang (D1CS00388G/cit11/1) 2020; 142 Kwon (D1CS00388G/cit24/1) 2019; 7 Moede (D1CS00388G/cit8/1) 2020; 63 Kim (D1CS00388G/cit25/1) 2020; 527 Zhang (D1CS00388G/cit41/1) 2018; 9 Liu (D1CS00388G/cit60/1) 2020; 5 Kang (D1CS00388G/cit4/1) 2011; 40 Lee (D1CS00388G/cit21/1) 2012; 48 Tian (D1CS00388G/cit33/1) 2009; 48 Kamariza (D1CS00388G/cit56/1) 2018; 10 Cho (D1CS00388G/cit39/1) 2018; 180 Benson (D1CS00388G/cit40/1) 2019; 58 Anorma (D1CS00388G/cit52/1) 2018; 4 Dunn (D1CS00388G/cit36/1) 2018; 9 Kwon (D1CS00388G/cit7/1) 2021; 143 Fernandez (D1CS00388G/cit62/1) 2017; 3 Beare (D1CS00388G/cit1/1) 2008; 80 Fujita (D1CS00388G/cit54/1) 2020; 6 Kim (D1CS00388G/cit43/1) 2016; 17 Ning (D1CS00388G/cit30/1) 2011; 10 Minn (D1CS00388G/cit51/1) 2014; 5 Park (D1CS00388G/cit32/1) 2007; 46 Kaplaneris (D1CS00388G/cit61/1) 2021; 12 Lin (D1CS00388G/cit26/1) 2015; 14 Zlitni (D1CS00388G/cit31/1) 2020; 11 Hirata (D1CS00388G/cit42/1) 2014; 6 Tian (D1CS00388G/cit12/1) 2018; 10 Keefe (D1CS00388G/cit2/1) 2010; 9 Lee (D1CS00388G/cit9/1) 2009; 131 Kuru (D1CS00388G/cit57/1) 2012; 51 Asanuma (D1CS00388G/cit53/1) 2015; 6 Yun (D1CS00388G/cit15/1) 2014; 50 Kim (D1CS00388G/cit17/1) 2019; 141 Yun (D1CS00388G/cit14/1) 2012; 109 Zhu (D1CS00388G/cit13/1) 2013; 2 Vasiliou (D1CS00388G/cit27/1) 2009; 3 Kim (D1CS00388G/cit46/1) 2019; 58 Kawatani (D1CS00388G/cit55/1) 2019; 141 Schmid (D1CS00388G/cit23/1) 2007; 2 Rodriguez (D1CS00388G/cit29/1) 2013; 110 Chandran (D1CS00388G/cit38/1) 2015; 25 Zhang (D1CS00388G/cit49/1) 2021; 60 Kim (D1CS00388G/cit18/1) 2016; 138 Park (D1CS00388G/cit37/1) 2019; 10 |
References_xml | – volume: 141 start-page: 14673 year: 2019 ident: D1CS00388G/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06068 contributor: fullname: Kim – volume: 141 start-page: 10409 year: 2019 ident: D1CS00388G/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04412 contributor: fullname: Kawatani – volume: 6 start-page: 6463 year: 2015 ident: D1CS00388G/cit53/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7463 contributor: fullname: Asanuma – volume: 9 start-page: 3209 year: 2018 ident: D1CS00388G/cit41/1 publication-title: Chem. Sci. doi: 10.1039/C7SC05407F contributor: fullname: Zhang – volume: 51 start-page: 12519 year: 2012 ident: D1CS00388G/cit57/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206749 contributor: fullname: Kuru – volume: 138 start-page: 402 year: 2016 ident: D1CS00388G/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11357 contributor: fullname: Kim – volume: 17 start-page: 2118 year: 2016 ident: D1CS00388G/cit43/1 publication-title: ChemBioChem doi: 10.1002/cbic.201600490 contributor: fullname: Kim – volume: 40 start-page: 3613 year: 2011 ident: D1CS00388G/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00172d contributor: fullname: Kang – volume: 324 start-page: 1441 year: 2009 ident: D1CS00388G/cit35/1 publication-title: Science doi: 10.1126/science.1172278 contributor: fullname: Gubernator – volume: 6 start-page: 2217 year: 2020 ident: D1CS00388G/cit54/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c01189 contributor: fullname: Fujita – volume: 527 start-page: 646 year: 2020 ident: D1CS00388G/cit25/1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.04.153 contributor: fullname: Kim – volume: 10 start-page: 1111 year: 2019 ident: D1CS00388G/cit37/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08990-9 contributor: fullname: Park – volume: 57 start-page: 2851 year: 2018 ident: D1CS00388G/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712920 contributor: fullname: Lee – volume: 58 start-page: 6911 year: 2019 ident: D1CS00388G/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900465 contributor: fullname: Benson – volume: 10 start-page: 602 year: 2011 ident: D1CS00388G/cit30/1 publication-title: Nat. Mater. doi: 10.1038/nmat3074 contributor: fullname: Ning – volume: 60 start-page: 5921 year: 2021 ident: D1CS00388G/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202015116 contributor: fullname: Zhang – volume: 137 start-page: 5355 year: 2015 ident: D1CS00388G/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5115776 contributor: fullname: Agrawalla – volume: 12 start-page: 3389 year: 2021 ident: D1CS00388G/cit61/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23462-9 contributor: fullname: Kaplaneris – volume: 131 start-page: 10077 year: 2009 ident: D1CS00388G/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9011657 contributor: fullname: Lee – volume: 48 start-page: 8027 year: 2009 ident: D1CS00388G/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901175 contributor: fullname: Tian – volume: 109 start-page: 10214 year: 2012 ident: D1CS00388G/cit14/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1200817109 contributor: fullname: Yun – volume: 48 start-page: 6681 year: 2012 ident: D1CS00388G/cit21/1 publication-title: Chem. Commun. doi: 10.1039/c2cc31662e contributor: fullname: Lee – volume: 14 start-page: 543 year: 2015 ident: D1CS00388G/cit26/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd4626 contributor: fullname: Lin – volume: 10 start-page: eaam6310 year: 2018 ident: D1CS00388G/cit56/1 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aam6310 contributor: fullname: Kamariza – volume: 3 start-page: 995 year: 2017 ident: D1CS00388G/cit62/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00262 contributor: fullname: Fernandez – volume: 47 start-page: 1277 year: 2014 ident: D1CS00388G/cit5/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar400285f contributor: fullname: Yun – volume: 2 start-page: 3 year: 2013 ident: D1CS00388G/cit13/1 publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2012.11.002 contributor: fullname: Zhu – volume: 3 start-page: 281 year: 2009 ident: D1CS00388G/cit27/1 publication-title: Hum. Genomics doi: 10.1186/1479-7364-3-3-281 contributor: fullname: Vasiliou – volume: 180 start-page: 12 year: 2018 ident: D1CS00388G/cit39/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.007 contributor: fullname: Cho – volume: 46 start-page: 4833 year: 2017 ident: D1CS00388G/cit59/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00018A contributor: fullname: Su – volume: 110 start-page: 870 year: 2013 ident: D1CS00388G/cit29/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1213569110 contributor: fullname: Rodriguez – volume: 58 start-page: 7972 year: 2019 ident: D1CS00388G/cit46/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903058 contributor: fullname: Kim – volume: 50 start-page: 7492 year: 2014 ident: D1CS00388G/cit15/1 publication-title: Chem. Commun. doi: 10.1039/C4CC02974G contributor: fullname: Yun – volume: 11 start-page: 1250 year: 2020 ident: D1CS00388G/cit31/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14985-8 contributor: fullname: Zlitni – volume: 29 start-page: 570 year: 2011 ident: D1CS00388G/cit50/1 publication-title: Stem Cells doi: 10.1002/stem.613 contributor: fullname: Balber – volume: 80 start-page: A.4A.1 year: 2008 ident: D1CS00388G/cit1/1 publication-title: Curr. Protoc. Immunol. doi: 10.1002/0471142735.ima04as80 contributor: fullname: Beare – volume: 10 start-page: 31959 year: 2018 ident: D1CS00388G/cit12/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11102 contributor: fullname: Tian – volume: 143 start-page: 5836 year: 2021 ident: D1CS00388G/cit7/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00944 contributor: fullname: Kwon – volume: 11 start-page: 335 year: 2019 ident: D1CS00388G/cit58/1 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0217-x contributor: fullname: Hsu – volume: 38 start-page: 406 year: 2017 ident: D1CS00388G/cit3/1 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.01.003 contributor: fullname: Guidotti – volume: 139 start-page: 3480 year: 2017 ident: D1CS00388G/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12122 contributor: fullname: Agrawalla – volume: 46 start-page: 2018 year: 2007 ident: D1CS00388G/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604364 contributor: fullname: Park – volume: 54 start-page: 11865 year: 2018 ident: D1CS00388G/cit22/1 publication-title: Chem. Commun. doi: 10.1039/C8CC05544K contributor: fullname: Kwon – volume: 5 start-page: 731 year: 2020 ident: D1CS00388G/cit60/1 publication-title: ACS Sens. doi: 10.1021/acssensors.9b01951 contributor: fullname: Liu – volume: 2 start-page: 187 year: 2007 ident: D1CS00388G/cit23/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.458 contributor: fullname: Schmid – volume: 6 start-page: 1095 year: 2021 ident: D1CS00388G/cit47/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00328-6 contributor: fullname: Cheng – volume: 9 start-page: 2838 year: 2018 ident: D1CS00388G/cit36/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05075-x contributor: fullname: Dunn – volume: 9 start-page: 537 year: 2010 ident: D1CS00388G/cit2/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd3141 contributor: fullname: Keefe – volume: 12 start-page: 2175 year: 2002 ident: D1CS00388G/cit19/1 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/S0960-894X(02)00339-6 contributor: fullname: Yang – volume: 29 start-page: 6794 year: 2009 ident: D1CS00388G/cit28/1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4177-08.2009 contributor: fullname: Eriksen – volume: 25 start-page: 4862 year: 2015 ident: D1CS00388G/cit38/1 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2015.06.037 contributor: fullname: Chandran – volume: 52 start-page: 3097 year: 2019 ident: D1CS00388G/cit6/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00253 contributor: fullname: Choi – volume: 88 start-page: 265 year: 2013 ident: D1CS00388G/cit45/1 publication-title: Am. J. Hematol. doi: 10.1002/ajh.23387 contributor: fullname: Hawley – volume: 6 start-page: 1165 year: 2014 ident: D1CS00388G/cit42/1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.02.006 contributor: fullname: Hirata – volume: 7 start-page: 3594 year: 2019 ident: D1CS00388G/cit24/1 publication-title: Biomater. Sci. doi: 10.1039/C9BM00152B contributor: fullname: Kwon – volume: 142 start-page: 3430 year: 2020 ident: D1CS00388G/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11173 contributor: fullname: Kang – volume: 5 start-page: 3662 year: 2014 ident: D1CS00388G/cit51/1 publication-title: Nat. Commun. doi: 10.1038/ncomms4662 contributor: fullname: Minn – volume: 4 start-page: 1045 year: 2018 ident: D1CS00388G/cit52/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00313 contributor: fullname: Anorma – volume: 63 start-page: 2064 year: 2020 ident: D1CS00388G/cit8/1 publication-title: Diabetologia doi: 10.1007/s00125-020-05196-3 contributor: fullname: Moede – volume: 49 start-page: 7497 year: 2010 ident: D1CS00388G/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002463 contributor: fullname: Im – volume: 58 start-page: 8426 year: 2019 ident: D1CS00388G/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902537 contributor: fullname: Kwon – volume: 142 start-page: 7075 year: 2020 ident: D1CS00388G/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00659 contributor: fullname: He |
SSID | ssj0011762 |
Score | 2.6297874 |
SecondaryResourceType | review_article |
Snippet | Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1573 |
SubjectTerms | Antibodies Biomarkers Biomolecules Carbohydrates Discrimination Fluorescent Dyes - chemistry Fluorescent indicators Lipids Metabolism Proteins Selective surfaces |
Title | Fluorescent probe strategy for live cell distinction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35136889 https://www.proquest.com/docview/2636854860 https://search.proquest.com/docview/2627133179 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKHOBS0ZbHAkVB5WqIYzuPI1qgUJVeWKS9RY7tRSutstWSvfTXdya2sylwoFysyNkkm_mc8Yxn_A0hp4UoWB4bTYW2iopJkdI8l5ZOYO6wYG4Y1pYDuvuV3jyIH2M5DuXd_e6SpjrTf17dV_IeVKEPcMVdsv-BbHdT6IBjwBdaQBjaN2F8PVvOF46PCROtKmSLbakfXBbmDLOCcGUewzDNtNYdCIGaILAFhNxNz03aZelMlwjBeKrmvTQApx1aNUFHyvbXDcDlxMSprKdeOK4lxD6J2Tr1J9KYiswxMgb96Alhp_0IdKvsmHRVSPzECYYRe1Upxxw5TS_Z8B7jkPn31dQTwu3PZqQuT7CNkPOiXF27RjYSUCmgyzYurka3P7uIEYwpHzFybxWoaHlxvrr6X-PjhUcB9sUi1H1p7YvRNvnoHYPowqH8iXyw9WeyOQz1-L4Q0UM7atGOAtoRoB0h2hGiHfXQ3iEP11ej4Q31NS-oFjFvaGqMiidc6irNtVDCVBNbaR4LpmKrUnQ3LYfPDsxuC0YHqziY7IyrFPzEQmYJ3yXr9by2-yTKbK6szAw0AouSKZNIMO5MzgVyFMkB-RaEUf521CblS4EPyFGQU-mH_lOZpFi3AOuXDchJdxrkgW-pajtf4m8SXAABhT8ge06-3WO4ZHCDHM7sgsC7bsP0U_vUx4M3_bdDsrUa2UdkvVks7VewEZvq2A-Pv0A5Yfk |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescent+probe+strategy+for+live+cell+distinction&rft.jtitle=Chemical+Society+reviews&rft.au=Liu%2C+Xiao&rft.au=Chang%2C+Young-Tae&rft.date=2022-03-07&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=5&rft.spage=1573&rft.epage=1591&rft_id=info:doi/10.1039%2FD1CS00388G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CS00388G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |