Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution

To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous m...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 63; pp. 159 - 169
Main Authors Qi, Haikun, Bustin, Aurelien, Cruz, Gastao, Jaubert, Olivier, Chen, Huijun, Botnar, René M., Prieto, Claudia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.11.2019
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2019.08.008

Cover

Abstract To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques. Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%). The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation.
AbstractList To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.PURPOSETo develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques.METHODSContinuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques.Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%).RESULTSPhantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%).The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation.CONCLUSIONSThe proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation.
To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques. Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%). The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation.
Author Cruz, Gastao
Jaubert, Olivier
Botnar, René M.
Prieto, Claudia
Bustin, Aurelien
Chen, Huijun
Qi, Haikun
Author_xml – sequence: 1
  givenname: Haikun
  surname: Qi
  fullname: Qi, Haikun
  email: haikun.qi@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 2
  givenname: Aurelien
  surname: Bustin
  fullname: Bustin, Aurelien
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 3
  givenname: Gastao
  surname: Cruz
  fullname: Cruz, Gastao
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 4
  givenname: Olivier
  surname: Jaubert
  fullname: Jaubert, Olivier
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 5
  givenname: Huijun
  surname: Chen
  fullname: Chen, Huijun
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: René M.
  surname: Botnar
  fullname: Botnar, René M.
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 7
  givenname: Claudia
  surname: Prieto
  fullname: Prieto, Claudia
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31425810$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS0URDaBH0CDXNLMxI95eESFAgGkSDSLRGd579zd9eKxB9uTaEv-OTNs0qQIlSXr-4507rkgZz54JOQtZyVnvLk6lEO0pWC8K5kqGVMvyIqrVha16qozsmKtZEUr6p_n5CKlA2OsFrJ-Rc4lr0StOFuRPzcRsYiT99bvaLLD5LLxGKZEh2MAE3trHF3zq7WggxnHhTK-p2A9UjuY3fJxb_Oeyk_0fh8cFns0MVMIdxjNDv_RNoUcw2iBptHkJTFiCm7KNvjX5OXWuIRvHt5L8uPm8_r6a3H7_cu364-3BVRM5qLpKgYVQCV6aZgwfVuh3DaNUo3oZAfYAgqDTccUbJjhirfVdtMjGGiwb6W8JO9PuWMMvydMWQ82ATp3qquFUKyWtWz4jL57QKfNgL0e49w0HvXj2WagPQEQQ0oRtxpsNkubHI11mjO9DKQPeh5ILwNppvQ80GzyJ-Zj-HPOh5OD83nuLEadwKIH7G1EyLoP9lm7e2KDs96Ccb_w-B_3L9aqvcs
CitedBy_id crossref_primary_10_1002_mrm_29171
crossref_primary_10_1002_mrm_30182
crossref_primary_10_1007_s10334_020_00848_2
crossref_primary_10_3390_diagnostics14171946
crossref_primary_10_1088_1361_6560_ad33b6
crossref_primary_10_1002_nbm_4370
crossref_primary_10_3389_fcvm_2020_00017
crossref_primary_10_1002_mrm_30124
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_1016_j_jocmr_2024_100997
crossref_primary_10_1098_rsta_2020_0197
crossref_primary_10_1002_mrm_29351
crossref_primary_10_1016_j_jocmr_2024_101100
crossref_primary_10_1186_s13104_024_06931_4
crossref_primary_10_1016_j_phro_2025_100739
crossref_primary_10_3389_fcvm_2022_953823
crossref_primary_10_3389_fcvm_2022_991383
crossref_primary_10_1148_radiol_2021204084
crossref_primary_10_1002_mrm_28793
crossref_primary_10_3389_fcvm_2022_826283
crossref_primary_10_1002_mrm_28330
crossref_primary_10_1007_s43657_021_00018_x
crossref_primary_10_1186_s12968_023_00973_6
crossref_primary_10_1002_nbm_4323
crossref_primary_10_1002_mrm_30139
crossref_primary_10_1007_s10554_024_03234_4
crossref_primary_10_1002_mrm_29143
crossref_primary_10_1002_mrm_30317
crossref_primary_10_1002_mrm_29680
crossref_primary_10_1002_mrm_28679
crossref_primary_10_1002_mrm_29449
crossref_primary_10_1002_mrm_28753
crossref_primary_10_1002_mrm_29027
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_3348_kjr_2020_0850
crossref_primary_10_3389_fcvm_2023_1160183
crossref_primary_10_1016_j_jocmr_2024_101051
Cites_doi 10.1002/jmri.21119
10.1186/1471-2342-10-1
10.1002/mrm.25665
10.1186/s12968-015-0127-z
10.1016/j.jcmg.2017.08.005
10.1002/mrm.24878
10.1186/s12968-018-0487-2
10.1067/mnc.2002.123122
10.1002/mrm.27474
10.1002/mrm.21208
10.1002/mrm.27574
10.1002/mrm.20835
10.1186/1532-429X-14-42
10.1186/s12968-014-0102-0
10.1002/mrm.25258
10.1002/mrm.27811
10.1136/heartjnl-2015-309077
10.1016/S0002-9149(02)02381-0
10.1002/mrm.27694
10.1002/mrm.25458
10.1186/s12968-017-0389-8
10.1002/mrm.26887
10.1002/mrm.20110
10.1186/s12968-015-0182-5
10.1038/s41551-018-0217-y
10.1002/mrm.21565
10.1002/mrm.20656
10.1002/mrm.25124
10.1002/mrm.26639
10.1186/s12968-016-0280-z
10.1002/mrm.27030
10.1136/heartjnl-2012-303052
10.1007/s13244-014-0366-9
10.1002/mrm.27466
10.1002/mrm.21837
10.1002/jmri.25575
10.1016/j.jcmg.2012.11.013
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mri.2019.08.008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 169
ExternalDocumentID 31425810
10_1016_j_mri_2019_08_008
S0730725X19303844
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c403t-6940c4cc42d3a02ad74e3f668862939ce7ce2ae6908cb0a18174fbdecac6ed733
IEDL.DBID AIKHN
ISSN 0730-725X
1873-5894
IngestDate Fri Sep 05 14:01:58 EDT 2025
Wed Feb 19 02:31:31 EST 2025
Tue Jul 01 01:55:24 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Fri Feb 23 02:22:55 EST 2024
Tue Aug 26 18:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cine imaging
Myocardial T1 mapping
Joint T1/T2
3D radial
Myocardial T2 mapping
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-6940c4cc42d3a02ad74e3f668862939ce7ce2ae6908cb0a18174fbdecac6ed733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31425810
PQID 2280535361
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2280535361
pubmed_primary_31425810
crossref_citationtrail_10_1016_j_mri_2019_08_008
crossref_primary_10_1016_j_mri_2019_08_008
elsevier_sciencedirect_doi_10_1016_j_mri_2019_08_008
elsevier_clinicalkey_doi_10_1016_j_mri_2019_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Seiberlich, Breuer, Blaimer, Jakob, Griswold (bb0145) 2008; 59
Captur, Manisty, Moon (bb0005) 2016; 102
Ferreira, Piechnik, Dall'Armellina, Karamitsos, Francis, Choudhury (bb0020) 2012; 14
Perea, Ortiz-Perez, Sole, Cibeira, de Caralt, Prat-Gonzalez (bb0035) 2015; 6
Chow, Flewitt, Green, Pagano, Friedrich, Thompson (bb0055) 2014; 71
Grothues, Smith, Moon, Bellenger, Collins, Klein (bb0015) 2002; 90
Messroghli, Radjenovic, Kozerke, Higgins, Sivananthan, Ridgway (bb0045) 2004; 52
Shaw, Yang, Zhou, Deng, Nguyen, Li (bb0110) 2019; 81
Heiberg, Sjogren, Ugander, Carlsson, Engblom, Arheden (bb0170) 2010; 10
Christodoulou, Shaw, Nguyen, Yang, Xie, Wang (bb0105) 2018; 2
Messroghli, Moon, Ferreira, Grosse-Wortmann, He, Kellman (bb0040) 2017; 19
Asslander, Cloos, Knoll, Sodickson, Hennig, Lattanzi (bb0125) 2018; 79
Karamitsos, Piechnik, Banypersad, Fontana, Ntusi, Ferreira (bb0030) 2013; 6
van Heeswijk, Piccini, Feliciano, Hullin, Schwitter, Stuber (bb0065) 2015; 73
Messroghli, Greiser, Frohlich, Dietz, Schulz-Menger (bb0155) 2007; 26
Captur, Gatehouse, Keenan, Heslinga, Bruehl, Prothmann (bb0150) 2016; 18
Chan, Ramsay, Cunningham, Plewes (bb0135) 2009; 61
Patel, Kramer (bb0010) 2017; 10
Huang, Liu, Stemmer, Poncelet (bb0050) 2007; 57
Guo, Chen, Herzka, Luo, Ding (bb0090) 2019; 81
Weingartner, Akcakaya, Roujol, Basha, Stehning, Kissinger (bb0070) 2015; 73
Bull, White, Piechnik, Flett, Ferreira, Loudon (bb0025) 2013; 99
Qi, Jaubert, Bustin, Cruz, Chen, Botnar (bb0115) 2019; 82
Feng, Axel, Chandarana, Block, Sodickson, Otazo (bb0180) 2016; 75
Bustin, Cruz, Jaubert, Lopez, Botnar, Prieto (bb0160) 2019; 81
Bustin, Lima da Cruz, Jaubert, Lopez, Botnar, Prieto (bb0120) 2019; 81
Weingartner, Shenoy, Rieger, Schad, Schulz-Menger, Akcakaya (bb0095) 2018; 79
Sprinkart, Luetkens, Traber, Doerner, Gieseke, Schnackenburg (bb0130) 2015; 17
Nordio, Henningsson, Chiribiri, Villa, Schneider, Botnar (bb0075) 2017; 46
Batchelor, Atkinson, Irarrazaval, Hill, Hajnal, Larkman (bb0185) 2005; 54
Ding, Fernandez-de-Manuel, Schar, Schuleri, Halperin, He (bb0060) 2015; 74
Kvernby, Warntjes, Haraldsson, Carlhall, Engvall, Ebbers (bb0085) 2014; 16
Becker, Schulz-Menger, Schaeffter, Kolbitsch (bb0100) 2019; 81
Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey (bb0165) 2002; 9
Ferreira, Wijesurendra, Liu, Greiser, Casadei, Robson (bb0175) 2015; 17
Guo, Chen, Wang, Herzka, Luo, Ding (bb0080) 2018; 20
Benkert, Tian, Huang, DiBella, Chandarana, Feng (bb0190) 2018; 80
Nezafat, Stuber, Ouwerkerk, Gharib, Desai, Pettigrew (bb0140) 2006; 55
Chow (10.1016/j.mri.2019.08.008_bb0055) 2014; 71
Cerqueira (10.1016/j.mri.2019.08.008_bb0165) 2002; 9
Karamitsos (10.1016/j.mri.2019.08.008_bb0030) 2013; 6
Guo (10.1016/j.mri.2019.08.008_bb0090) 2019; 81
Becker (10.1016/j.mri.2019.08.008_bb0100) 2019; 81
Heiberg (10.1016/j.mri.2019.08.008_bb0170) 2010; 10
Messroghli (10.1016/j.mri.2019.08.008_bb0045) 2004; 52
Ding (10.1016/j.mri.2019.08.008_bb0060) 2015; 74
Kvernby (10.1016/j.mri.2019.08.008_bb0085) 2014; 16
Sprinkart (10.1016/j.mri.2019.08.008_bb0130) 2015; 17
Nezafat (10.1016/j.mri.2019.08.008_bb0140) 2006; 55
Bustin (10.1016/j.mri.2019.08.008_bb0120) 2019; 81
Captur (10.1016/j.mri.2019.08.008_bb0150) 2016; 18
Perea (10.1016/j.mri.2019.08.008_bb0035) 2015; 6
Bull (10.1016/j.mri.2019.08.008_bb0025) 2013; 99
Messroghli (10.1016/j.mri.2019.08.008_bb0040) 2017; 19
van Heeswijk (10.1016/j.mri.2019.08.008_bb0065) 2015; 73
Ferreira (10.1016/j.mri.2019.08.008_bb0175) 2015; 17
Weingartner (10.1016/j.mri.2019.08.008_bb0095) 2018; 79
Ferreira (10.1016/j.mri.2019.08.008_bb0020) 2012; 14
Christodoulou (10.1016/j.mri.2019.08.008_bb0105) 2018; 2
Benkert (10.1016/j.mri.2019.08.008_bb0190) 2018; 80
Feng (10.1016/j.mri.2019.08.008_bb0180) 2016; 75
Bustin (10.1016/j.mri.2019.08.008_bb0160) 2019; 81
Huang (10.1016/j.mri.2019.08.008_bb0050) 2007; 57
Nordio (10.1016/j.mri.2019.08.008_bb0075) 2017; 46
Captur (10.1016/j.mri.2019.08.008_bb0005) 2016; 102
Asslander (10.1016/j.mri.2019.08.008_bb0125) 2018; 79
Seiberlich (10.1016/j.mri.2019.08.008_bb0145) 2008; 59
Batchelor (10.1016/j.mri.2019.08.008_bb0185) 2005; 54
Weingartner (10.1016/j.mri.2019.08.008_bb0070) 2015; 73
Chan (10.1016/j.mri.2019.08.008_bb0135) 2009; 61
Patel (10.1016/j.mri.2019.08.008_bb0010) 2017; 10
Qi (10.1016/j.mri.2019.08.008_bb0115) 2019; 82
Grothues (10.1016/j.mri.2019.08.008_bb0015) 2002; 90
Shaw (10.1016/j.mri.2019.08.008_bb0110) 2019; 81
Messroghli (10.1016/j.mri.2019.08.008_bb0155) 2007; 26
Guo (10.1016/j.mri.2019.08.008_bb0080) 2018; 20
References_xml – volume: 73
  start-page: 214
  year: 2015
  end-page: 222
  ident: bb0070
  article-title: Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values
  publication-title: Magn Reson Med
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  ident: bb0045
  article-title: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 9
  start-page: 240
  year: 2002
  end-page: 245
  ident: bb0165
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: J Nucl Cardiol
– volume: 79
  start-page: 2087
  year: 2018
  end-page: 2100
  ident: bb0095
  article-title: Temporally resolved parametric assessment of Z-magnetization recovery (TOPAZ): dynamic myocardial T1 mapping using a cine steady-state look-locker approach
  publication-title: Magn Reson Med
– volume: 79
  start-page: 83
  year: 2018
  end-page: 96
  ident: bb0125
  article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting
  publication-title: Magn Reson Med
– volume: 19
  start-page: 75
  year: 2017
  ident: bb0040
  article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)
  publication-title: J Cardiovasc Magn Reson
– volume: 90
  start-page: 29
  year: 2002
  end-page: 34
  ident: bb0015
  article-title: Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy
  publication-title: Am J Cardiol
– volume: 61
  start-page: 354
  year: 2009
  end-page: 363
  ident: bb0135
  article-title: Temporal stability of adaptive 3D radial MRI using multidimensional golden means
  publication-title: Magn Reson Med
– volume: 80
  start-page: 286
  year: 2018
  end-page: 293
  ident: bb0190
  article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3705
  year: 2019
  end-page: 3719
  ident: bb0120
  article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI
  publication-title: Magn Reson Med
– volume: 18
  start-page: 58
  year: 2016
  ident: bb0150
  article-title: A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance-the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program
  publication-title: J Cardiovasc Magn Reson
– volume: 26
  start-page: 1081
  year: 2007
  end-page: 1086
  ident: bb0155
  article-title: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart
  publication-title: J Magn Reson Imaging
– volume: 6
  start-page: 189
  year: 2015
  end-page: 202
  ident: bb0035
  article-title: T1 mapping: characterisation of myocardial interstitial space
  publication-title: Insights Imaging
– volume: 81
  start-page: 1080
  year: 2019
  end-page: 1091
  ident: bb0100
  article-title: Simultaneous high-resolution cardiac T1 mapping and cine imaging using model-based iterative image reconstruction
  publication-title: Magn Reson Med
– volume: 14
  start-page: 42
  year: 2012
  ident: bb0020
  article-title: Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 57
  start-page: 960
  year: 2007
  end-page: 966
  ident: bb0050
  article-title: T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence
  publication-title: Magn Reson Med
– volume: 81
  start-page: 1031
  year: 2019
  end-page: 1043
  ident: bb0090
  article-title: A three-dimensional free-breathing sequence for simultaneous myocardial T1 and T2 mapping
  publication-title: Magn Reson Med
– volume: 10
  year: 2010
  ident: bb0170
  article-title: Design and validation of segment--freely available software for cardiovascular image analysis
  publication-title: BMC Med Imaging
– volume: 102
  start-page: 1429
  year: 2016
  end-page: 1435
  ident: bb0005
  article-title: Cardiac MRI evaluation of myocardial disease
  publication-title: Heart
– volume: 71
  start-page: 2082
  year: 2014
  end-page: 2095
  ident: bb0055
  article-title: Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping
  publication-title: Magn Reson Med
– volume: 73
  start-page: 1549
  year: 2015
  end-page: 1554
  ident: bb0065
  article-title: Self-navigated isotropic three-dimensional cardiac T2 mapping
  publication-title: Magn Reson Med
– volume: 16
  start-page: 102
  year: 2014
  ident: bb0085
  article-title: Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS
  publication-title: J Cardiovasc Magn Reson
– volume: 74
  start-page: 803
  year: 2015
  end-page: 816
  ident: bb0060
  article-title: Three-dimensional whole-heart T2 mapping at 3T
  publication-title: Magn Reson Med
– volume: 6
  start-page: 488
  year: 2013
  end-page: 497
  ident: bb0030
  article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis
  publication-title: JACC Cardiovasc Imaging
– volume: 81
  start-page: 3705
  year: 2019
  end-page: 3719
  ident: bb0160
  article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 55
  start-page: 858
  year: 2006
  end-page: 864
  ident: bb0140
  article-title: B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T
  publication-title: Magn Reson Med
– volume: 59
  start-page: 930
  year: 2008
  end-page: 935
  ident: bb0145
  article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories
  publication-title: Magn Reson Med
– volume: 17
  start-page: 77
  year: 2015
  ident: bb0175
  article-title: Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias
  publication-title: J Cardiovasc Magn Reson
– volume: 81
  start-page: 2450
  year: 2019
  end-page: 2463
  ident: bb0110
  article-title: Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking
  publication-title: Magn Reson Med
– volume: 82
  start-page: 1331
  year: 2019
  end-page: 1342
  ident: bb0115
  article-title: Free-running 3D whole heart myocardial T1 mapping with isotropic spatial resolution
  publication-title: Magn Reson Med
– volume: 20
  start-page: 64
  year: 2018
  ident: bb0080
  article-title: Three-dimensional free breathing whole heart cardiovascular magnetic resonance T1 mapping at 3 T
  publication-title: J Cardiovasc Magn Reson
– volume: 54
  start-page: 1273
  year: 2005
  end-page: 1280
  ident: bb0185
  article-title: Matrix description of general motion correction applied to multishot images
  publication-title: Magn Reson Med
– volume: 99
  start-page: 932
  year: 2013
  end-page: 937
  ident: bb0025
  article-title: Human non-contrast T1 values and correlation with histology in diffuse fibrosis
  publication-title: Heart
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  ident: bb0105
  article-title: Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 10
  start-page: 1180
  year: 2017
  end-page: 1193
  ident: bb0010
  article-title: Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy
  publication-title: JACC Cardiovasc Imaging
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  ident: bb0180
  article-title: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing
  publication-title: Magn Reson Med
– volume: 46
  start-page: 218
  year: 2017
  end-page: 227
  ident: bb0075
  article-title: 3D myocardial T-1 mapping using saturation recovery
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 12
  year: 2015
  ident: bb0130
  article-title: Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping
  publication-title: J Cardiovasc Magn Reson
– volume: 26
  start-page: 1081
  issue: 4
  year: 2007
  ident: 10.1016/j.mri.2019.08.008_bb0155
  article-title: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21119
– volume: 10
  issue: 1
  year: 2010
  ident: 10.1016/j.mri.2019.08.008_bb0170
  article-title: Design and validation of segment--freely available software for cardiovascular image analysis
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-10-1
– volume: 75
  start-page: 775
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2019.08.008_bb0180
  article-title: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25665
– volume: 17
  start-page: 12
  year: 2015
  ident: 10.1016/j.mri.2019.08.008_bb0130
  article-title: Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-015-0127-z
– volume: 10
  start-page: 1180
  issue: 10
  year: 2017
  ident: 10.1016/j.mri.2019.08.008_bb0010
  article-title: Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2017.08.005
– volume: 71
  start-page: 2082
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2019.08.008_bb0055
  article-title: Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24878
– volume: 20
  start-page: 64
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2019.08.008_bb0080
  article-title: Three-dimensional free breathing whole heart cardiovascular magnetic resonance T1 mapping at 3 T
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-018-0487-2
– volume: 9
  start-page: 240
  issue: 2
  year: 2002
  ident: 10.1016/j.mri.2019.08.008_bb0165
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: J Nucl Cardiol
  doi: 10.1067/mnc.2002.123122
– volume: 81
  start-page: 1080
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2019.08.008_bb0100
  article-title: Simultaneous high-resolution cardiac T1 mapping and cine imaging using model-based iterative image reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27474
– volume: 57
  start-page: 960
  issue: 5
  year: 2007
  ident: 10.1016/j.mri.2019.08.008_bb0050
  article-title: T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21208
– volume: 81
  start-page: 2450
  issue: 4
  year: 2019
  ident: 10.1016/j.mri.2019.08.008_bb0110
  article-title: Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27574
– volume: 55
  start-page: 858
  issue: 4
  year: 2006
  ident: 10.1016/j.mri.2019.08.008_bb0140
  article-title: B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20835
– volume: 14
  start-page: 42
  year: 2012
  ident: 10.1016/j.mri.2019.08.008_bb0020
  article-title: Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-14-42
– volume: 16
  start-page: 102
  year: 2014
  ident: 10.1016/j.mri.2019.08.008_bb0085
  article-title: Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-014-0102-0
– volume: 73
  start-page: 1549
  issue: 4
  year: 2015
  ident: 10.1016/j.mri.2019.08.008_bb0065
  article-title: Self-navigated isotropic three-dimensional cardiac T2 mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25258
– volume: 82
  start-page: 1331
  issue: 4
  year: 2019
  ident: 10.1016/j.mri.2019.08.008_bb0115
  article-title: Free-running 3D whole heart myocardial T1 mapping with isotropic spatial resolution
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27811
– volume: 102
  start-page: 1429
  issue: 18
  year: 2016
  ident: 10.1016/j.mri.2019.08.008_bb0005
  article-title: Cardiac MRI evaluation of myocardial disease
  publication-title: Heart
  doi: 10.1136/heartjnl-2015-309077
– volume: 90
  start-page: 29
  issue: 1
  year: 2002
  ident: 10.1016/j.mri.2019.08.008_bb0015
  article-title: Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(02)02381-0
– volume: 81
  start-page: 3705
  issue: 6
  year: 2019
  ident: 10.1016/j.mri.2019.08.008_bb0160
  article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast magnetic resonance imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27694
– volume: 74
  start-page: 803
  issue: 3
  year: 2015
  ident: 10.1016/j.mri.2019.08.008_bb0060
  article-title: Three-dimensional whole-heart T2 mapping at 3T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25458
– volume: 19
  start-page: 75
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2019.08.008_bb0040
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-017-0389-8
– volume: 81
  start-page: 3705
  issue: 6
  year: 2019
  ident: 10.1016/j.mri.2019.08.008_bb0120
  article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27694
– volume: 79
  start-page: 2087
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2019.08.008_bb0095
  article-title: Temporally resolved parametric assessment of Z-magnetization recovery (TOPAZ): dynamic myocardial T1 mapping using a cine steady-state look-locker approach
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26887
– volume: 52
  start-page: 141
  issue: 1
  year: 2004
  ident: 10.1016/j.mri.2019.08.008_bb0045
  article-title: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20110
– volume: 17
  start-page: 77
  year: 2015
  ident: 10.1016/j.mri.2019.08.008_bb0175
  article-title: Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-015-0182-5
– volume: 2
  start-page: 215
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2019.08.008_bb0105
  article-title: Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0217-y
– volume: 59
  start-page: 930
  issue: 4
  year: 2008
  ident: 10.1016/j.mri.2019.08.008_bb0145
  article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21565
– volume: 54
  start-page: 1273
  issue: 5
  year: 2005
  ident: 10.1016/j.mri.2019.08.008_bb0185
  article-title: Matrix description of general motion correction applied to multishot images
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20656
– volume: 73
  start-page: 214
  issue: 1
  year: 2015
  ident: 10.1016/j.mri.2019.08.008_bb0070
  article-title: Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25124
– volume: 79
  start-page: 83
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2019.08.008_bb0125
  article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26639
– volume: 18
  start-page: 58
  issue: 1
  year: 2016
  ident: 10.1016/j.mri.2019.08.008_bb0150
  article-title: A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance-the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0280-z
– volume: 80
  start-page: 286
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2019.08.008_bb0190
  article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27030
– volume: 99
  start-page: 932
  issue: 13
  year: 2013
  ident: 10.1016/j.mri.2019.08.008_bb0025
  article-title: Human non-contrast T1 values and correlation with histology in diffuse fibrosis
  publication-title: Heart
  doi: 10.1136/heartjnl-2012-303052
– volume: 6
  start-page: 189
  issue: 2
  year: 2015
  ident: 10.1016/j.mri.2019.08.008_bb0035
  article-title: T1 mapping: characterisation of myocardial interstitial space
  publication-title: Insights Imaging
  doi: 10.1007/s13244-014-0366-9
– volume: 81
  start-page: 1031
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2019.08.008_bb0090
  article-title: A three-dimensional free-breathing sequence for simultaneous myocardial T1 and T2 mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27466
– volume: 61
  start-page: 354
  issue: 2
  year: 2009
  ident: 10.1016/j.mri.2019.08.008_bb0135
  article-title: Temporal stability of adaptive 3D radial MRI using multidimensional golden means
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21837
– volume: 46
  start-page: 218
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2019.08.008_bb0075
  article-title: 3D myocardial T-1 mapping using saturation recovery
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25575
– volume: 6
  start-page: 488
  issue: 4
  year: 2013
  ident: 10.1016/j.mri.2019.08.008_bb0030
  article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2012.11.013
SSID ssj0005235
Score 2.4388938
Snippet To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle...
To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.PURPOSETo develop a free-running framework for 3D...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms 3D radial
Cine imaging
Joint T1/T2
Myocardial T1 mapping
Myocardial T2 mapping
Title Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19303844
https://dx.doi.org/10.1016/j.mri.2019.08.008
https://www.ncbi.nlm.nih.gov/pubmed/31425810
https://www.proquest.com/docview/2280535361
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED7aFMZexrZ2W9qtaLCnghZbkmX7sXQL2Ub7shTyJmRJHh6NExyX0ZdC_3l1thw26DrYo43ONrrPdyfp7j6AD8Ky0iQuplKzkgqeOao1kghYydNCmFgWuA95fiFnl-LrIlnswNlQC4NplcH29za9s9bhziTM5mRdVZPvCM6UJQsfgkQ8E2IX9hjPZTKCvdMv32YXv2V69DybfjxFgeFws0vzWjYVJnjlXSNPJJl82D39Lfzs3ND0OTwL8SM57T_xBey4-iU8OQ8n5PtwN22co811x0RENhUmDOra-fU9Wd54v4V4uCLzeDJnZKmxOcMPomtLUJpUy46ziODmLOGfyC8kz6XIed0Sg7me3vh0o6vNqm1W68qQDWZk-yf6VXsA8QFcTj_Pz2Y00CxQIyLeUpmLyAhjBLNcR0zbVDheSpn5xU7Oc-NSJA1zfhmdmSLSPiRIRVlYZ7SRzqacv4JRvardGyDOMVbGxmpssZMVae6w0tejJDU6TywfQzTMrjKhBzlSYVypIdnsp_IKUagQhfSYUTaGk63Ium_A8dhgNqhMDZWl3hYq7x4eExJboT-g9y-x9wMmlP8l8ZylV6fCDkMJT7iMx_C6B8v203nsjWQWR4f_99IjeIpXfTHkWxi1zbV756OitjiG3Y-38XHA_j2zngz9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgJeEJ9bYYCReEKymtiOkzxOG1XH1r7QSX2zHNtBQWtapZkQj_zn-BKnAgmGxGviSyzf-T7su_sBvBeWlSZxMZWalVTwzFGtEUTASp4WwsSywHPI-ULOrsWnVbI6gLOhFgbTKoPu73V6p63Dk0lYzcm2qiafUThTlqy8CxLxTIh7cCgSH-2N4PD04nK2-CXTo8fZ9OMpEgyXm12a17qpMMEr7xp5Isjkn83T39zPzgxNH8Oj4D-S036KT-DA1U_h_jzckD-DH9PGOdrcdkhEZFdhwqCunY_vyfq7t1soDzdkGU-WjKw1Nmf4QnRtCVKTat1hFhE8nCX8nHxD8FyKmNctMZjr6ZVPN7rabdpms60M2WFGtv-ij9qDED-H6-nH5dmMBpgFakTEWypzERlhjGCW64hpmwrHSykzH-zkPDcuRdAw58PozBSR9i5BKsrCOqONdDbl_AWM6k3tjoE4x1gZG6uxxU5WpLnDSl8vJanReWL5GKJhdZUJPcgRCuNGDclmX5VniEKGKITHjLIxfNiTbPsGHHcNZgPL1FBZ6nWh8ubhLiKxJ_pN9P5F9m6QCeW3JN6z9OxU2GEo4QmX8RiOemHZT53HXklmcfTy_376Fh7MlvMrdXWxuHwFD_FNXxh5AqO2uXWvvYfUFm_CDvgJI58O7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free-running+simultaneous+myocardial+T1%2FT2+mapping+and+cine+imaging+with+3D+whole-heart+coverage+and+isotropic+spatial+resolution&rft.jtitle=Magnetic+resonance+imaging&rft.au=Qi%2C+Haikun&rft.au=Bustin%2C+Aurelien&rft.au=Cruz%2C+Gastao&rft.au=Jaubert%2C+Olivier&rft.date=2019-11-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=63&rft.spage=159&rft_id=info:doi/10.1016%2Fj.mri.2019.08.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon