Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution
To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous m...
Saved in:
Published in | Magnetic resonance imaging Vol. 63; pp. 159 - 169 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0730-725X 1873-5894 1873-5894 |
DOI | 10.1016/j.mri.2019.08.008 |
Cover
Abstract | To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.
Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques.
Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%).
The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation. |
---|---|
AbstractList | To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.PURPOSETo develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques.METHODSContinuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques.Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%).RESULTSPhantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%).The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation.CONCLUSIONSThe proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation. To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques. Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%). The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation. |
Author | Cruz, Gastao Jaubert, Olivier Botnar, René M. Prieto, Claudia Bustin, Aurelien Chen, Huijun Qi, Haikun |
Author_xml | – sequence: 1 givenname: Haikun surname: Qi fullname: Qi, Haikun email: haikun.qi@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 2 givenname: Aurelien surname: Bustin fullname: Bustin, Aurelien organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 3 givenname: Gastao surname: Cruz fullname: Cruz, Gastao organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 4 givenname: Olivier surname: Jaubert fullname: Jaubert, Olivier organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 5 givenname: Huijun surname: Chen fullname: Chen, Huijun organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 6 givenname: René M. surname: Botnar fullname: Botnar, René M. organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 7 givenname: Claudia surname: Prieto fullname: Prieto, Claudia organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31425810$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFDEUhS0URDaBH0CDXNLMxI95eESFAgGkSDSLRGd579zd9eKxB9uTaEv-OTNs0qQIlSXr-4507rkgZz54JOQtZyVnvLk6lEO0pWC8K5kqGVMvyIqrVha16qozsmKtZEUr6p_n5CKlA2OsFrJ-Rc4lr0StOFuRPzcRsYiT99bvaLLD5LLxGKZEh2MAE3trHF3zq7WggxnHhTK-p2A9UjuY3fJxb_Oeyk_0fh8cFns0MVMIdxjNDv_RNoUcw2iBptHkJTFiCm7KNvjX5OXWuIRvHt5L8uPm8_r6a3H7_cu364-3BVRM5qLpKgYVQCV6aZgwfVuh3DaNUo3oZAfYAgqDTccUbJjhirfVdtMjGGiwb6W8JO9PuWMMvydMWQ82ATp3qquFUKyWtWz4jL57QKfNgL0e49w0HvXj2WagPQEQQ0oRtxpsNkubHI11mjO9DKQPeh5ILwNppvQ80GzyJ-Zj-HPOh5OD83nuLEadwKIH7G1EyLoP9lm7e2KDs96Ccb_w-B_3L9aqvcs |
CitedBy_id | crossref_primary_10_1002_mrm_29171 crossref_primary_10_1002_mrm_30182 crossref_primary_10_1007_s10334_020_00848_2 crossref_primary_10_3390_diagnostics14171946 crossref_primary_10_1088_1361_6560_ad33b6 crossref_primary_10_1002_nbm_4370 crossref_primary_10_3389_fcvm_2020_00017 crossref_primary_10_1002_mrm_30124 crossref_primary_10_3389_fcvm_2022_1009131 crossref_primary_10_1016_j_jocmr_2024_100997 crossref_primary_10_1098_rsta_2020_0197 crossref_primary_10_1002_mrm_29351 crossref_primary_10_1016_j_jocmr_2024_101100 crossref_primary_10_1186_s13104_024_06931_4 crossref_primary_10_1016_j_phro_2025_100739 crossref_primary_10_3389_fcvm_2022_953823 crossref_primary_10_3389_fcvm_2022_991383 crossref_primary_10_1148_radiol_2021204084 crossref_primary_10_1002_mrm_28793 crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1002_mrm_28330 crossref_primary_10_1007_s43657_021_00018_x crossref_primary_10_1186_s12968_023_00973_6 crossref_primary_10_1002_nbm_4323 crossref_primary_10_1002_mrm_30139 crossref_primary_10_1007_s10554_024_03234_4 crossref_primary_10_1002_mrm_29143 crossref_primary_10_1002_mrm_30317 crossref_primary_10_1002_mrm_29680 crossref_primary_10_1002_mrm_28679 crossref_primary_10_1002_mrm_29449 crossref_primary_10_1002_mrm_28753 crossref_primary_10_1002_mrm_29027 crossref_primary_10_1002_mrm_29721 crossref_primary_10_1016_j_pnmrs_2025_101561 crossref_primary_10_3348_kjr_2020_0850 crossref_primary_10_3389_fcvm_2023_1160183 crossref_primary_10_1016_j_jocmr_2024_101051 |
Cites_doi | 10.1002/jmri.21119 10.1186/1471-2342-10-1 10.1002/mrm.25665 10.1186/s12968-015-0127-z 10.1016/j.jcmg.2017.08.005 10.1002/mrm.24878 10.1186/s12968-018-0487-2 10.1067/mnc.2002.123122 10.1002/mrm.27474 10.1002/mrm.21208 10.1002/mrm.27574 10.1002/mrm.20835 10.1186/1532-429X-14-42 10.1186/s12968-014-0102-0 10.1002/mrm.25258 10.1002/mrm.27811 10.1136/heartjnl-2015-309077 10.1016/S0002-9149(02)02381-0 10.1002/mrm.27694 10.1002/mrm.25458 10.1186/s12968-017-0389-8 10.1002/mrm.26887 10.1002/mrm.20110 10.1186/s12968-015-0182-5 10.1038/s41551-018-0217-y 10.1002/mrm.21565 10.1002/mrm.20656 10.1002/mrm.25124 10.1002/mrm.26639 10.1186/s12968-016-0280-z 10.1002/mrm.27030 10.1136/heartjnl-2012-303052 10.1007/s13244-014-0366-9 10.1002/mrm.27466 10.1002/mrm.21837 10.1002/jmri.25575 10.1016/j.jcmg.2012.11.013 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.mri.2019.08.008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 169 |
ExternalDocumentID | 31425810 10_1016_j_mri_2019_08_008 S0730725X19303844 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c403t-6940c4cc42d3a02ad74e3f668862939ce7ce2ae6908cb0a18174fbdecac6ed733 |
IEDL.DBID | AIKHN |
ISSN | 0730-725X 1873-5894 |
IngestDate | Fri Sep 05 14:01:58 EDT 2025 Wed Feb 19 02:31:31 EST 2025 Tue Jul 01 01:55:24 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Fri Feb 23 02:22:55 EST 2024 Tue Aug 26 18:33:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cine imaging Myocardial T1 mapping Joint T1/T2 3D radial Myocardial T2 mapping |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-6940c4cc42d3a02ad74e3f668862939ce7ce2ae6908cb0a18174fbdecac6ed733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31425810 |
PQID | 2280535361 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2280535361 pubmed_primary_31425810 crossref_citationtrail_10_1016_j_mri_2019_08_008 crossref_primary_10_1016_j_mri_2019_08_008 elsevier_sciencedirect_doi_10_1016_j_mri_2019_08_008 elsevier_clinicalkey_doi_10_1016_j_mri_2019_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Seiberlich, Breuer, Blaimer, Jakob, Griswold (bb0145) 2008; 59 Captur, Manisty, Moon (bb0005) 2016; 102 Ferreira, Piechnik, Dall'Armellina, Karamitsos, Francis, Choudhury (bb0020) 2012; 14 Perea, Ortiz-Perez, Sole, Cibeira, de Caralt, Prat-Gonzalez (bb0035) 2015; 6 Chow, Flewitt, Green, Pagano, Friedrich, Thompson (bb0055) 2014; 71 Grothues, Smith, Moon, Bellenger, Collins, Klein (bb0015) 2002; 90 Messroghli, Radjenovic, Kozerke, Higgins, Sivananthan, Ridgway (bb0045) 2004; 52 Shaw, Yang, Zhou, Deng, Nguyen, Li (bb0110) 2019; 81 Heiberg, Sjogren, Ugander, Carlsson, Engblom, Arheden (bb0170) 2010; 10 Christodoulou, Shaw, Nguyen, Yang, Xie, Wang (bb0105) 2018; 2 Messroghli, Moon, Ferreira, Grosse-Wortmann, He, Kellman (bb0040) 2017; 19 Asslander, Cloos, Knoll, Sodickson, Hennig, Lattanzi (bb0125) 2018; 79 Karamitsos, Piechnik, Banypersad, Fontana, Ntusi, Ferreira (bb0030) 2013; 6 van Heeswijk, Piccini, Feliciano, Hullin, Schwitter, Stuber (bb0065) 2015; 73 Messroghli, Greiser, Frohlich, Dietz, Schulz-Menger (bb0155) 2007; 26 Captur, Gatehouse, Keenan, Heslinga, Bruehl, Prothmann (bb0150) 2016; 18 Chan, Ramsay, Cunningham, Plewes (bb0135) 2009; 61 Patel, Kramer (bb0010) 2017; 10 Huang, Liu, Stemmer, Poncelet (bb0050) 2007; 57 Guo, Chen, Herzka, Luo, Ding (bb0090) 2019; 81 Weingartner, Akcakaya, Roujol, Basha, Stehning, Kissinger (bb0070) 2015; 73 Bull, White, Piechnik, Flett, Ferreira, Loudon (bb0025) 2013; 99 Qi, Jaubert, Bustin, Cruz, Chen, Botnar (bb0115) 2019; 82 Feng, Axel, Chandarana, Block, Sodickson, Otazo (bb0180) 2016; 75 Bustin, Cruz, Jaubert, Lopez, Botnar, Prieto (bb0160) 2019; 81 Bustin, Lima da Cruz, Jaubert, Lopez, Botnar, Prieto (bb0120) 2019; 81 Weingartner, Shenoy, Rieger, Schad, Schulz-Menger, Akcakaya (bb0095) 2018; 79 Sprinkart, Luetkens, Traber, Doerner, Gieseke, Schnackenburg (bb0130) 2015; 17 Nordio, Henningsson, Chiribiri, Villa, Schneider, Botnar (bb0075) 2017; 46 Batchelor, Atkinson, Irarrazaval, Hill, Hajnal, Larkman (bb0185) 2005; 54 Ding, Fernandez-de-Manuel, Schar, Schuleri, Halperin, He (bb0060) 2015; 74 Kvernby, Warntjes, Haraldsson, Carlhall, Engvall, Ebbers (bb0085) 2014; 16 Becker, Schulz-Menger, Schaeffter, Kolbitsch (bb0100) 2019; 81 Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey (bb0165) 2002; 9 Ferreira, Wijesurendra, Liu, Greiser, Casadei, Robson (bb0175) 2015; 17 Guo, Chen, Wang, Herzka, Luo, Ding (bb0080) 2018; 20 Benkert, Tian, Huang, DiBella, Chandarana, Feng (bb0190) 2018; 80 Nezafat, Stuber, Ouwerkerk, Gharib, Desai, Pettigrew (bb0140) 2006; 55 Chow (10.1016/j.mri.2019.08.008_bb0055) 2014; 71 Cerqueira (10.1016/j.mri.2019.08.008_bb0165) 2002; 9 Karamitsos (10.1016/j.mri.2019.08.008_bb0030) 2013; 6 Guo (10.1016/j.mri.2019.08.008_bb0090) 2019; 81 Becker (10.1016/j.mri.2019.08.008_bb0100) 2019; 81 Heiberg (10.1016/j.mri.2019.08.008_bb0170) 2010; 10 Messroghli (10.1016/j.mri.2019.08.008_bb0045) 2004; 52 Ding (10.1016/j.mri.2019.08.008_bb0060) 2015; 74 Kvernby (10.1016/j.mri.2019.08.008_bb0085) 2014; 16 Sprinkart (10.1016/j.mri.2019.08.008_bb0130) 2015; 17 Nezafat (10.1016/j.mri.2019.08.008_bb0140) 2006; 55 Bustin (10.1016/j.mri.2019.08.008_bb0120) 2019; 81 Captur (10.1016/j.mri.2019.08.008_bb0150) 2016; 18 Perea (10.1016/j.mri.2019.08.008_bb0035) 2015; 6 Bull (10.1016/j.mri.2019.08.008_bb0025) 2013; 99 Messroghli (10.1016/j.mri.2019.08.008_bb0040) 2017; 19 van Heeswijk (10.1016/j.mri.2019.08.008_bb0065) 2015; 73 Ferreira (10.1016/j.mri.2019.08.008_bb0175) 2015; 17 Weingartner (10.1016/j.mri.2019.08.008_bb0095) 2018; 79 Ferreira (10.1016/j.mri.2019.08.008_bb0020) 2012; 14 Christodoulou (10.1016/j.mri.2019.08.008_bb0105) 2018; 2 Benkert (10.1016/j.mri.2019.08.008_bb0190) 2018; 80 Feng (10.1016/j.mri.2019.08.008_bb0180) 2016; 75 Bustin (10.1016/j.mri.2019.08.008_bb0160) 2019; 81 Huang (10.1016/j.mri.2019.08.008_bb0050) 2007; 57 Nordio (10.1016/j.mri.2019.08.008_bb0075) 2017; 46 Captur (10.1016/j.mri.2019.08.008_bb0005) 2016; 102 Asslander (10.1016/j.mri.2019.08.008_bb0125) 2018; 79 Seiberlich (10.1016/j.mri.2019.08.008_bb0145) 2008; 59 Batchelor (10.1016/j.mri.2019.08.008_bb0185) 2005; 54 Weingartner (10.1016/j.mri.2019.08.008_bb0070) 2015; 73 Chan (10.1016/j.mri.2019.08.008_bb0135) 2009; 61 Patel (10.1016/j.mri.2019.08.008_bb0010) 2017; 10 Qi (10.1016/j.mri.2019.08.008_bb0115) 2019; 82 Grothues (10.1016/j.mri.2019.08.008_bb0015) 2002; 90 Shaw (10.1016/j.mri.2019.08.008_bb0110) 2019; 81 Messroghli (10.1016/j.mri.2019.08.008_bb0155) 2007; 26 Guo (10.1016/j.mri.2019.08.008_bb0080) 2018; 20 |
References_xml | – volume: 73 start-page: 214 year: 2015 end-page: 222 ident: bb0070 article-title: Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values publication-title: Magn Reson Med – volume: 52 start-page: 141 year: 2004 end-page: 146 ident: bb0045 article-title: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart publication-title: Magn Reson Med – volume: 9 start-page: 240 year: 2002 end-page: 245 ident: bb0165 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: J Nucl Cardiol – volume: 79 start-page: 2087 year: 2018 end-page: 2100 ident: bb0095 article-title: Temporally resolved parametric assessment of Z-magnetization recovery (TOPAZ): dynamic myocardial T1 mapping using a cine steady-state look-locker approach publication-title: Magn Reson Med – volume: 79 start-page: 83 year: 2018 end-page: 96 ident: bb0125 article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting publication-title: Magn Reson Med – volume: 19 start-page: 75 year: 2017 ident: bb0040 article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) publication-title: J Cardiovasc Magn Reson – volume: 90 start-page: 29 year: 2002 end-page: 34 ident: bb0015 article-title: Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy publication-title: Am J Cardiol – volume: 61 start-page: 354 year: 2009 end-page: 363 ident: bb0135 article-title: Temporal stability of adaptive 3D radial MRI using multidimensional golden means publication-title: Magn Reson Med – volume: 80 start-page: 286 year: 2018 end-page: 293 ident: bb0190 article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding publication-title: Magn Reson Med – volume: 81 start-page: 3705 year: 2019 end-page: 3719 ident: bb0120 article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI publication-title: Magn Reson Med – volume: 18 start-page: 58 year: 2016 ident: bb0150 article-title: A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance-the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program publication-title: J Cardiovasc Magn Reson – volume: 26 start-page: 1081 year: 2007 end-page: 1086 ident: bb0155 article-title: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart publication-title: J Magn Reson Imaging – volume: 6 start-page: 189 year: 2015 end-page: 202 ident: bb0035 article-title: T1 mapping: characterisation of myocardial interstitial space publication-title: Insights Imaging – volume: 81 start-page: 1080 year: 2019 end-page: 1091 ident: bb0100 article-title: Simultaneous high-resolution cardiac T1 mapping and cine imaging using model-based iterative image reconstruction publication-title: Magn Reson Med – volume: 14 start-page: 42 year: 2012 ident: bb0020 article-title: Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – volume: 57 start-page: 960 year: 2007 end-page: 966 ident: bb0050 article-title: T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence publication-title: Magn Reson Med – volume: 81 start-page: 1031 year: 2019 end-page: 1043 ident: bb0090 article-title: A three-dimensional free-breathing sequence for simultaneous myocardial T1 and T2 mapping publication-title: Magn Reson Med – volume: 10 year: 2010 ident: bb0170 article-title: Design and validation of segment--freely available software for cardiovascular image analysis publication-title: BMC Med Imaging – volume: 102 start-page: 1429 year: 2016 end-page: 1435 ident: bb0005 article-title: Cardiac MRI evaluation of myocardial disease publication-title: Heart – volume: 71 start-page: 2082 year: 2014 end-page: 2095 ident: bb0055 article-title: Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping publication-title: Magn Reson Med – volume: 73 start-page: 1549 year: 2015 end-page: 1554 ident: bb0065 article-title: Self-navigated isotropic three-dimensional cardiac T2 mapping publication-title: Magn Reson Med – volume: 16 start-page: 102 year: 2014 ident: bb0085 article-title: Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS publication-title: J Cardiovasc Magn Reson – volume: 74 start-page: 803 year: 2015 end-page: 816 ident: bb0060 article-title: Three-dimensional whole-heart T2 mapping at 3T publication-title: Magn Reson Med – volume: 6 start-page: 488 year: 2013 end-page: 497 ident: bb0030 article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis publication-title: JACC Cardiovasc Imaging – volume: 81 start-page: 3705 year: 2019 end-page: 3719 ident: bb0160 article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast magnetic resonance imaging publication-title: Magn Reson Med – volume: 55 start-page: 858 year: 2006 end-page: 864 ident: bb0140 article-title: B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T publication-title: Magn Reson Med – volume: 59 start-page: 930 year: 2008 end-page: 935 ident: bb0145 article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories publication-title: Magn Reson Med – volume: 17 start-page: 77 year: 2015 ident: bb0175 article-title: Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias publication-title: J Cardiovasc Magn Reson – volume: 81 start-page: 2450 year: 2019 end-page: 2463 ident: bb0110 article-title: Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking publication-title: Magn Reson Med – volume: 82 start-page: 1331 year: 2019 end-page: 1342 ident: bb0115 article-title: Free-running 3D whole heart myocardial T1 mapping with isotropic spatial resolution publication-title: Magn Reson Med – volume: 20 start-page: 64 year: 2018 ident: bb0080 article-title: Three-dimensional free breathing whole heart cardiovascular magnetic resonance T1 mapping at 3 T publication-title: J Cardiovasc Magn Reson – volume: 54 start-page: 1273 year: 2005 end-page: 1280 ident: bb0185 article-title: Matrix description of general motion correction applied to multishot images publication-title: Magn Reson Med – volume: 99 start-page: 932 year: 2013 end-page: 937 ident: bb0025 article-title: Human non-contrast T1 values and correlation with histology in diffuse fibrosis publication-title: Heart – volume: 2 start-page: 215 year: 2018 end-page: 226 ident: bb0105 article-title: Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng – volume: 10 start-page: 1180 year: 2017 end-page: 1193 ident: bb0010 article-title: Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy publication-title: JACC Cardiovasc Imaging – volume: 75 start-page: 775 year: 2016 end-page: 788 ident: bb0180 article-title: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing publication-title: Magn Reson Med – volume: 46 start-page: 218 year: 2017 end-page: 227 ident: bb0075 article-title: 3D myocardial T-1 mapping using saturation recovery publication-title: J Magn Reson Imaging – volume: 17 start-page: 12 year: 2015 ident: bb0130 article-title: Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping publication-title: J Cardiovasc Magn Reson – volume: 26 start-page: 1081 issue: 4 year: 2007 ident: 10.1016/j.mri.2019.08.008_bb0155 article-title: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21119 – volume: 10 issue: 1 year: 2010 ident: 10.1016/j.mri.2019.08.008_bb0170 article-title: Design and validation of segment--freely available software for cardiovascular image analysis publication-title: BMC Med Imaging doi: 10.1186/1471-2342-10-1 – volume: 75 start-page: 775 issue: 2 year: 2016 ident: 10.1016/j.mri.2019.08.008_bb0180 article-title: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing publication-title: Magn Reson Med doi: 10.1002/mrm.25665 – volume: 17 start-page: 12 year: 2015 ident: 10.1016/j.mri.2019.08.008_bb0130 article-title: Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-015-0127-z – volume: 10 start-page: 1180 issue: 10 year: 2017 ident: 10.1016/j.mri.2019.08.008_bb0010 article-title: Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2017.08.005 – volume: 71 start-page: 2082 issue: 6 year: 2014 ident: 10.1016/j.mri.2019.08.008_bb0055 article-title: Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping publication-title: Magn Reson Med doi: 10.1002/mrm.24878 – volume: 20 start-page: 64 issue: 1 year: 2018 ident: 10.1016/j.mri.2019.08.008_bb0080 article-title: Three-dimensional free breathing whole heart cardiovascular magnetic resonance T1 mapping at 3 T publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-018-0487-2 – volume: 9 start-page: 240 issue: 2 year: 2002 ident: 10.1016/j.mri.2019.08.008_bb0165 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: J Nucl Cardiol doi: 10.1067/mnc.2002.123122 – volume: 81 start-page: 1080 issue: 2 year: 2019 ident: 10.1016/j.mri.2019.08.008_bb0100 article-title: Simultaneous high-resolution cardiac T1 mapping and cine imaging using model-based iterative image reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.27474 – volume: 57 start-page: 960 issue: 5 year: 2007 ident: 10.1016/j.mri.2019.08.008_bb0050 article-title: T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence publication-title: Magn Reson Med doi: 10.1002/mrm.21208 – volume: 81 start-page: 2450 issue: 4 year: 2019 ident: 10.1016/j.mri.2019.08.008_bb0110 article-title: Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking publication-title: Magn Reson Med doi: 10.1002/mrm.27574 – volume: 55 start-page: 858 issue: 4 year: 2006 ident: 10.1016/j.mri.2019.08.008_bb0140 article-title: B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T publication-title: Magn Reson Med doi: 10.1002/mrm.20835 – volume: 14 start-page: 42 year: 2012 ident: 10.1016/j.mri.2019.08.008_bb0020 article-title: Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-42 – volume: 16 start-page: 102 year: 2014 ident: 10.1016/j.mri.2019.08.008_bb0085 article-title: Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-014-0102-0 – volume: 73 start-page: 1549 issue: 4 year: 2015 ident: 10.1016/j.mri.2019.08.008_bb0065 article-title: Self-navigated isotropic three-dimensional cardiac T2 mapping publication-title: Magn Reson Med doi: 10.1002/mrm.25258 – volume: 82 start-page: 1331 issue: 4 year: 2019 ident: 10.1016/j.mri.2019.08.008_bb0115 article-title: Free-running 3D whole heart myocardial T1 mapping with isotropic spatial resolution publication-title: Magn Reson Med doi: 10.1002/mrm.27811 – volume: 102 start-page: 1429 issue: 18 year: 2016 ident: 10.1016/j.mri.2019.08.008_bb0005 article-title: Cardiac MRI evaluation of myocardial disease publication-title: Heart doi: 10.1136/heartjnl-2015-309077 – volume: 90 start-page: 29 issue: 1 year: 2002 ident: 10.1016/j.mri.2019.08.008_bb0015 article-title: Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy publication-title: Am J Cardiol doi: 10.1016/S0002-9149(02)02381-0 – volume: 81 start-page: 3705 issue: 6 year: 2019 ident: 10.1016/j.mri.2019.08.008_bb0160 article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast magnetic resonance imaging publication-title: Magn Reson Med doi: 10.1002/mrm.27694 – volume: 74 start-page: 803 issue: 3 year: 2015 ident: 10.1016/j.mri.2019.08.008_bb0060 article-title: Three-dimensional whole-heart T2 mapping at 3T publication-title: Magn Reson Med doi: 10.1002/mrm.25458 – volume: 19 start-page: 75 issue: 1 year: 2017 ident: 10.1016/j.mri.2019.08.008_bb0040 publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-017-0389-8 – volume: 81 start-page: 3705 issue: 6 year: 2019 ident: 10.1016/j.mri.2019.08.008_bb0120 article-title: High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI publication-title: Magn Reson Med doi: 10.1002/mrm.27694 – volume: 79 start-page: 2087 issue: 4 year: 2018 ident: 10.1016/j.mri.2019.08.008_bb0095 article-title: Temporally resolved parametric assessment of Z-magnetization recovery (TOPAZ): dynamic myocardial T1 mapping using a cine steady-state look-locker approach publication-title: Magn Reson Med doi: 10.1002/mrm.26887 – volume: 52 start-page: 141 issue: 1 year: 2004 ident: 10.1016/j.mri.2019.08.008_bb0045 article-title: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart publication-title: Magn Reson Med doi: 10.1002/mrm.20110 – volume: 17 start-page: 77 year: 2015 ident: 10.1016/j.mri.2019.08.008_bb0175 article-title: Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-015-0182-5 – volume: 2 start-page: 215 issue: 4 year: 2018 ident: 10.1016/j.mri.2019.08.008_bb0105 article-title: Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0217-y – volume: 59 start-page: 930 issue: 4 year: 2008 ident: 10.1016/j.mri.2019.08.008_bb0145 article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories publication-title: Magn Reson Med doi: 10.1002/mrm.21565 – volume: 54 start-page: 1273 issue: 5 year: 2005 ident: 10.1016/j.mri.2019.08.008_bb0185 article-title: Matrix description of general motion correction applied to multishot images publication-title: Magn Reson Med doi: 10.1002/mrm.20656 – volume: 73 start-page: 214 issue: 1 year: 2015 ident: 10.1016/j.mri.2019.08.008_bb0070 article-title: Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values publication-title: Magn Reson Med doi: 10.1002/mrm.25124 – volume: 79 start-page: 83 issue: 1 year: 2018 ident: 10.1016/j.mri.2019.08.008_bb0125 article-title: Low rank alternating direction method of multipliers reconstruction for MR fingerprinting publication-title: Magn Reson Med doi: 10.1002/mrm.26639 – volume: 18 start-page: 58 issue: 1 year: 2016 ident: 10.1016/j.mri.2019.08.008_bb0150 article-title: A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance-the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-016-0280-z – volume: 80 start-page: 286 issue: 1 year: 2018 ident: 10.1016/j.mri.2019.08.008_bb0190 article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding publication-title: Magn Reson Med doi: 10.1002/mrm.27030 – volume: 99 start-page: 932 issue: 13 year: 2013 ident: 10.1016/j.mri.2019.08.008_bb0025 article-title: Human non-contrast T1 values and correlation with histology in diffuse fibrosis publication-title: Heart doi: 10.1136/heartjnl-2012-303052 – volume: 6 start-page: 189 issue: 2 year: 2015 ident: 10.1016/j.mri.2019.08.008_bb0035 article-title: T1 mapping: characterisation of myocardial interstitial space publication-title: Insights Imaging doi: 10.1007/s13244-014-0366-9 – volume: 81 start-page: 1031 issue: 2 year: 2019 ident: 10.1016/j.mri.2019.08.008_bb0090 article-title: A three-dimensional free-breathing sequence for simultaneous myocardial T1 and T2 mapping publication-title: Magn Reson Med doi: 10.1002/mrm.27466 – volume: 61 start-page: 354 issue: 2 year: 2009 ident: 10.1016/j.mri.2019.08.008_bb0135 article-title: Temporal stability of adaptive 3D radial MRI using multidimensional golden means publication-title: Magn Reson Med doi: 10.1002/mrm.21837 – volume: 46 start-page: 218 issue: 1 year: 2017 ident: 10.1016/j.mri.2019.08.008_bb0075 article-title: 3D myocardial T-1 mapping using saturation recovery publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25575 – volume: 6 start-page: 488 issue: 4 year: 2013 ident: 10.1016/j.mri.2019.08.008_bb0030 article-title: Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2012.11.013 |
SSID | ssj0005235 |
Score | 2.4388938 |
Snippet | To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.
Continuous data acquisition with 3D golden angle... To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.PURPOSETo develop a free-running framework for 3D... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | 3D radial Cine imaging Joint T1/T2 Myocardial T1 mapping Myocardial T2 mapping |
Title | Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19303844 https://dx.doi.org/10.1016/j.mri.2019.08.008 https://www.ncbi.nlm.nih.gov/pubmed/31425810 https://www.proquest.com/docview/2280535361 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED7aFMZexrZ2W9qtaLCnghZbkmX7sXQL2Ub7shTyJmRJHh6NExyX0ZdC_3l1thw26DrYo43ONrrPdyfp7j6AD8Ky0iQuplKzkgqeOao1kghYydNCmFgWuA95fiFnl-LrIlnswNlQC4NplcH29za9s9bhziTM5mRdVZPvCM6UJQsfgkQ8E2IX9hjPZTKCvdMv32YXv2V69DybfjxFgeFws0vzWjYVJnjlXSNPJJl82D39Lfzs3ND0OTwL8SM57T_xBey4-iU8OQ8n5PtwN22co811x0RENhUmDOra-fU9Wd54v4V4uCLzeDJnZKmxOcMPomtLUJpUy46ziODmLOGfyC8kz6XIed0Sg7me3vh0o6vNqm1W68qQDWZk-yf6VXsA8QFcTj_Pz2Y00CxQIyLeUpmLyAhjBLNcR0zbVDheSpn5xU7Oc-NSJA1zfhmdmSLSPiRIRVlYZ7SRzqacv4JRvardGyDOMVbGxmpssZMVae6w0tejJDU6TywfQzTMrjKhBzlSYVypIdnsp_IKUagQhfSYUTaGk63Ium_A8dhgNqhMDZWl3hYq7x4eExJboT-g9y-x9wMmlP8l8ZylV6fCDkMJT7iMx_C6B8v203nsjWQWR4f_99IjeIpXfTHkWxi1zbV756OitjiG3Y-38XHA_j2zngz9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgJeEJ9bYYCReEKymtiOkzxOG1XH1r7QSX2zHNtBQWtapZkQj_zn-BKnAgmGxGviSyzf-T7su_sBvBeWlSZxMZWalVTwzFGtEUTASp4WwsSywHPI-ULOrsWnVbI6gLOhFgbTKoPu73V6p63Dk0lYzcm2qiafUThTlqy8CxLxTIh7cCgSH-2N4PD04nK2-CXTo8fZ9OMpEgyXm12a17qpMMEr7xp5Isjkn83T39zPzgxNH8Oj4D-S036KT-DA1U_h_jzckD-DH9PGOdrcdkhEZFdhwqCunY_vyfq7t1soDzdkGU-WjKw1Nmf4QnRtCVKTat1hFhE8nCX8nHxD8FyKmNctMZjr6ZVPN7rabdpms60M2WFGtv-ij9qDED-H6-nH5dmMBpgFakTEWypzERlhjGCW64hpmwrHSykzH-zkPDcuRdAw58PozBSR9i5BKsrCOqONdDbl_AWM6k3tjoE4x1gZG6uxxU5WpLnDSl8vJanReWL5GKJhdZUJPcgRCuNGDclmX5VniEKGKITHjLIxfNiTbPsGHHcNZgPL1FBZ6nWh8ubhLiKxJ_pN9P5F9m6QCeW3JN6z9OxU2GEo4QmX8RiOemHZT53HXklmcfTy_376Fh7MlvMrdXWxuHwFD_FNXxh5AqO2uXWvvYfUFm_CDvgJI58O7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free-running+simultaneous+myocardial+T1%2FT2+mapping+and+cine+imaging+with+3D+whole-heart+coverage+and+isotropic+spatial+resolution&rft.jtitle=Magnetic+resonance+imaging&rft.au=Qi%2C+Haikun&rft.au=Bustin%2C+Aurelien&rft.au=Cruz%2C+Gastao&rft.au=Jaubert%2C+Olivier&rft.date=2019-11-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=63&rft.spage=159&rft_id=info:doi/10.1016%2Fj.mri.2019.08.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |