Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution
To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging. Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous m...
Saved in:
Published in | Magnetic resonance imaging Vol. 63; pp. 159 - 169 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0730-725X 1873-5894 1873-5894 |
DOI | 10.1016/j.mri.2019.08.008 |
Cover
Summary: | To develop a free-running framework for 3D isotropic simultaneous myocardial T1/T2 mapping and cine imaging.
Continuous data acquisition with 3D golden angle radial trajectory is used in conjunction with T2 preparation of varying echo times and inversion recovery (IR) pulses to enable simultaneous myocardial T1/T2 mapping and cine imaging. Data acquisition is retrospectively synchronized with ECG signal, and 1D respiratory self-navigation signal is extracted from the k-space center of all radial spokes. Respiratory binning is performed based on the estimated respiratory signal, enabling estimation and correction of 3D translational respiratory motion. Using high-dimensionality patch-based undersampled reconstruction with dictionary-based low-rank inversion, whole-heart T1/T2 maps and cine images can be generated with 2 mm isotropic spatial resolution. The proposed technique was validated in a standardised phantom and ten healthy subjects in comparison to conventional 2D imaging techniques.
Phantom T1 and T2 measurements demonstrated good agreement with 2D spin echo techniques. Septal T1 estimated with the proposed technique (1185.6 ± 49.8 ms) was longer than with a conventional breath-hold 2D IR-prepared sequence (1044.3 ± 26.7 ms), whereas T2 measurements (47.6 ± 2.5 ms) were lower than a breath-hold 2D gradient spin echo sequence (52.0 ± 1.8 ms). Precision of the proposed 3D mapping was higher than conventional 2D mapping techniques. Ejection fraction measured with the proposed 3D approach (63.8 ± 6.8%) agreed well with conventional breath-held multi-slice 2D cine (62.3 ± 6.4%).
The proposed technique provides co-registered 3D T1/T2 maps and cine images with isotropic spatial resolution from a single free-breathing scan, thereby providing a promising imaging tool for whole-heart myocardial tissue characterization and functional evaluation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0730-725X 1873-5894 1873-5894 |
DOI: | 10.1016/j.mri.2019.08.008 |