Asymptotic Error Rate Analysis of Selection Combining on Generalized Correlated Nakagami-m Channels

From the canonical representation of the Marcum Q-function, a simple and highly accurate small argument approximation for the Marcum Q-function is first obtained. Utilizing this approximation, we derive the asymptotic error rate and outage probability expressions for multi-branch selection combining...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 60; no. 7; pp. 1765 - 1771
Main Authors Xianchang Li, Cheng, Julian
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:From the canonical representation of the Marcum Q-function, a simple and highly accurate small argument approximation for the Marcum Q-function is first obtained. Utilizing this approximation, we derive the asymptotic error rate and outage probability expressions for multi-branch selection combining over generalized correlated Nakagami-m fading channels. These closed-form solutions can be used to provide rapid and accurate estimation of the error rates and outage probabilities in large signal-to-noise ratio regimes. It is shown that asymptotic error rates and outage probability over correlated Nakagami-m branches can be obtained by scaling the asymptotic error rates and outage probability over independent branches with a factor det m (M), where det(M) is the determinant of matrix M whose elements are the square root of the corresponding elements in the branch power covariance coefficient matrix.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2012.060112.110146