Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy

Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition be...

Full description

Saved in:
Bibliographic Details
Published inScience China. Life sciences Vol. 53; no. 10; pp. 1189 - 1195
Main Authors Li, Mi, Liu, LianQing, Xi, Ning, Wang, YueChao, Dong, ZaiLi, Li, GuangYong, Xiao, XiuBin, Zhang, WeiJing
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.10.2010
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition between the CD20 antigen and anti-CD20 antibody Rituximab on B lymphoma cells under near-physiological conditions. The CD20-Rituximab specific binding force was measured through tip functionalization. Distribution of CD20 on the B lymphoma cells was visualized three-dimensionally. In addition, the relationship between the intramolecular force and the molecular extension of the CD20-Rituximab complex was analyzed under an external force. These results facilitate further investigation of the mechanism of Rituximab’s anti-cancer effect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7305
1869-1889
DOI:10.1007/s11427-010-4070-9