Adaptive vibration isolation for axially moving strings: theory and experiment

High-speed transport of continuous materials such as belts, webs, filaments, or bands can cause unwanted vibration. Vibration control for these systems often focuses on restricting the response resulting from external disturbances (e.g. support roller eccentricity or aerodynamic excitation) to areas...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 38; no. 3; pp. 379 - 390
Main Authors Li, Yugang, Aron, Dan, Rahn, Christopher D.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-speed transport of continuous materials such as belts, webs, filaments, or bands can cause unwanted vibration. Vibration control for these systems often focuses on restricting the response resulting from external disturbances (e.g. support roller eccentricity or aerodynamic excitation) to areas not requiring high precision positioning. This paper introduces vibration controllers for an axially moving string system consisting of a controlled span coupled to a disturbed span via an actuator. The system model includes a partial differential equation for the two spans and an ordinary differential equation for the actuator. Exact model knowledge and adaptive isolation controllers, based on Lyapunov theory, regulate the controlled span from bounded disturbances in the adjacent, uncontrolled span. Assuming distributed damping in the uncontrolled span, the exact model knowledge and adaptive controllers exponentially and asymptotically drive the controlled span displacement to zero, respectively, while ensuring bounded uncontrolled span displacement and control force. Experiments demonstrate the effectiveness of the proposed controller in isolating the controlled span from disturbances and damping the controlled span displacement.
ISSN:0005-1098
1873-2836
DOI:10.1016/S0005-1098(01)00219-9