Motion Target Localization Method for Step Vibration Signals Based on Deep Learning

To address the limitations of traditional footstep vibration signal localization algorithms, such as limited accuracy, single feature extraction, and cumbersome parameter adjustment, a motion target localization method for step vibration signals based on deep learning is proposed. Velocity vectors a...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 20; p. 9361
Main Authors Chen, Rui, Zhu, Yanping, Chen, Qi, Zhu, Chenyang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To address the limitations of traditional footstep vibration signal localization algorithms, such as limited accuracy, single feature extraction, and cumbersome parameter adjustment, a motion target localization method for step vibration signals based on deep learning is proposed. Velocity vectors are used to describe human motion and adapt it to the nonlinear motion and complex interactions of moving targets. In the feature extraction stage, a one-dimensional residual convolutional neural network is constructed to extract the time–frequency domain features of the signals, and a channel attention mechanism is introduced to enhance the model’s focus on different vibration sensor signal features. Furthermore, a bidirectional long short-term memory network is built to learn the temporal relationships between the extracted signal features of the convolution operation. Finally, regression operations are performed through fully connected layers to estimate the position and velocity vectors of the moving target. The dataset consists of footstep vibration signal data from six experimental subjects walking on four different paths and the actual motion trajectories of the moving targets obtained using a visual tracking system. Experimental results show that compared to WT-TDOA and SAE-BPNN, the positioning accuracy of our method has been improved by 37.9% and 24.8%, respectively, with a system average positioning error reduced to 0.376 m.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app14209361