Simultaneous analysis of surface marker expression and cell cycle progression in human peripheral blood mononuclear cells

One method for examining cell cycle kinetics by flow cytometry uses continuous DNA labeling with bromodeoxyuridine (BrdU), a thymidine analogue. Upon incorporation into DNA, BrdU causes stoichiometric quenching of the DNA fluorochrome Hoechst 33258. After counterstaining with a secondary DNA fluoroc...

Full description

Saved in:
Bibliographic Details
Published inJournal of immunological methods Vol. 256; no. 1; pp. 35 - 46
Main Authors Rosato, Michael T, Jabbour, Abdallah J, Ponce, Rafael A, Kavanagh, Terrance J, Takaro, Timothy K, Hill, Juliane P, Poot, Martin, Rabinovitch, Peter S, Faustman, Elaine M
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2001
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One method for examining cell cycle kinetics by flow cytometry uses continuous DNA labeling with bromodeoxyuridine (BrdU), a thymidine analogue. Upon incorporation into DNA, BrdU causes stoichiometric quenching of the DNA fluorochrome Hoechst 33258. After counterstaining with a secondary DNA fluorochrome (e.g., ethidium bromide), the analyst can distinguish cells in different phases of the cell cycle over a number of mitotic cycles with flow cytometry. In this report, we describe a modification of the flow cytometric BrdU–Hoechst assay that allows combined analysis of cell proliferation and immunophenotyping at the single cell level. To demonstrate an application of this method, human peripheral blood mononuclear cells were stimulated with tetanus toxoid or interleukin-2 for up to 6 days in the presence of BrdU, harvested, and immunostained for the cell surface markers CD3, CD4, CD8, CD14, CD19, and the cytokine receptor, CCR5. We used four-color flow cytometry analyses to simultaneously measure cell proliferation and surface marker expression, for the purpose of immunophenotyping and identifying specific cell subsets responding to antigen stimulation. Our successful application of this method suggests that it may be used to study immune responses at the molecular and cellular level and to identify mechanisms of immune system modulation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1759
1872-7905
DOI:10.1016/S0022-1759(01)00428-8