The trinuclear iron-sulfur cluster S3 in Bacillus subtilis succinate:menaquinone reductase; effects of a mutation in the putative cluster ligation motif on enzyme activity and EPR properties
Succinate:quinone reductases (SQRs) and quinol:fumarate reductases (QFRs) each contain a bi-, a tri- and a tetra-nuclear iron-sulfur cluster. The C-terminal half of the iron-sulfur protein subunit of these enzymes shows two fully conserved motifs of cysteine residues, stereotypical for ligands of [3...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1229; no. 3; pp. 356 - 362 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.05.1995
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Succinate:quinone reductases (SQRs) and quinol:fumarate reductases (QFRs) each contain a bi-, a tri- and a tetra-nuclear iron-sulfur cluster. The C-terminal half of the iron-sulfur protein subunit of these enzymes shows two fully conserved motifs of cysteine residues, stereotypical for ligands of [3Fe-4S] and [4Fe-4S] clusters. To analyze the functional role of the trinuclear cluster S3 in
Bacillus subtilis SQR, a fourth cysteine residue was introduced into the putative ligation motif to that cluster. A corresponding mutation in
Escherichia coli QFR results in a tri- to tetranuclear conversion (Manodori et al. (1992) Biochemistry 31, 2703–2731). We have found that presence of the extra cysteine in
B. subtilis SQR does not result in cluster conversion. It does, however, affect the EPR properties of the cluster S3, whereas those of the other two clusters remain normal. The results strongly support the view that residues in the most C-terminal cysteine motif in the iron-sulfur protein subunit of SQRs and QFRs ligate the trinuclear cluster. Compared to wild-type SQR, S3 in the
B. subtilis mutant enzyme is not sensitive to methanol and the midpoint redox potential is close to normal. The quinone reductase activity of the mutant enzyme is only 35% of normal. Thus, the architecture around cluster S3 plays a role in electron transfer to quinone or in the binding of quinone to the enzyme. |
---|---|
ISSN: | 0005-2728 0006-3002 1879-2650 |
DOI: | 10.1016/0005-2728(95)00023-C |