Advanced Numerical Modeling of the Dispersion of Ceramic Nanoparticles during Ultrasonic Cavitation Processing and Solidification of 6061-based Nanocomposites

The metal-matrix-nano-composites (MMNCs) in this study consist of a 6061 alloy matrix reinforced with 1.0 wt.% SiC 50 nm diameter nanoparticles that are dispersed uniformly within the matrix in large volume using an ultrasonic cavitation dispersion technique (UCDS) available in the Solidification La...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 84; no. 1; pp. 12020 - 12027
Main Authors Zhang, D, Nastac, L
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 11.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The metal-matrix-nano-composites (MMNCs) in this study consist of a 6061 alloy matrix reinforced with 1.0 wt.% SiC 50 nm diameter nanoparticles that are dispersed uniformly within the matrix in large volume using an ultrasonic cavitation dispersion technique (UCDS) available in the Solidification Laboratory at UA. The required ultrasonic parameters to achieve the required cavitation for adequate degassing and refining of the aluminium alloy as well as the fluid flow characteristics for uniform dispersion of the nanoparticles into the 6061 matrix are being investigated in this study by using an in-house developed CFD ultrasonic cavitation model. The multiphase CFD model accounts for turbulent fluid flow, heat transfer and solidification as well as the complex interaction between the solidifying alloy and nanoparticles by using the Ansys's Fluent Dense Discrete Phase Model (DDPM) and a particle engulfment and pushing (PEP) model. The PEP model accounts for the Brownian motion. SEM analysis was performed on the as-cast MMNC coupons processed via UCDS and confirmed the distribution of the nanoparticles predicted by the current CFD model. A parametric study was performed using the validated CFD model. The study includes the effects of magnitude of the fluid flow and ultrasonic probe location (gravity direction).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/84/1/012020