Foregut exclusion disrupts intestinal glucose sensing and alters portal nutrient and hormonal milieu

The antidiabetes effects of Roux-en-Y gastric bypass (RYGB) are well-known, but the underlying mechanisms remain unclear. Isolating the proximal small intestine, and in particular its luminal glucose sensors, from the nutrient stream has been proposed as a critical change, but the pathways involved...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 64; no. 6; pp. 1941 - 1950
Main Authors Pal, Atanu, Rhoads, David B, Tavakkoli, Ali
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The antidiabetes effects of Roux-en-Y gastric bypass (RYGB) are well-known, but the underlying mechanisms remain unclear. Isolating the proximal small intestine, and in particular its luminal glucose sensors, from the nutrient stream has been proposed as a critical change, but the pathways involved are unclear. In a rodent model, we tested the effects of isolating and then stimulating a segment of proximal intestine using glucose analogs to examine their impact on glucose absorption (Gabsorp) and hormone secretion after a glucose bolus into the distal jejunum. Analogs selective for sodium-glucose cotransporter (SGLT) family members and the sweet taste receptor were tested, and measurements of the portosystemic gradient were used to determine Gabsorp and hormone secretion, including GLP-1. Proximal intestinal isolation reduced Gabsorp and GLP-1 secretion. Stimulation of the glucose-sensing protein SGLT3 increased Gabsorp and GLP-1 secretion. These effects were abolished by vagotomy. Sweet taste receptor stimulation only increased GLP-1 secretion. This study suggests a novel role for SGLT3 in coordinating intestinal function, as reflected by the concomitant modulation of Gabsorp and GLP-1 secretion, with these effects being mediated by the vagus nerve. Our findings provide potential mechanistic insights into foregut exclusion in RYGB and identify SGLT3 as a possible antidiabetes therapeutic target.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0012-1797
1939-327X
DOI:10.2337/db14-1578