Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines

Arsenic trioxide (ATO, Trisenox) is an important antileukemic drug, but its efficacy is frequently low when used as a single agent. Here, we demonstrate that the apoptotic action of ATO is greatly increased when combined with subcytotoxic curcumin concentrations in U937 and HL60 human acute myeloid...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 335; no. 1; pp. 114 - 123
Main Authors Sánchez, Yolanda, Simón, Gloria P, Calviño, Eva, de Blas, Elena, Aller, Patricio
Format Journal Article
LanguageEnglish
Published United States 01.10.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Arsenic trioxide (ATO, Trisenox) is an important antileukemic drug, but its efficacy is frequently low when used as a single agent. Here, we demonstrate that the apoptotic action of ATO is greatly increased when combined with subcytotoxic curcumin concentrations in U937 and HL60 human acute myeloid leukemia cells, and with lower efficacy in K562 chronic myelogenous leukemia cells. Curcumin exerts similar cooperative effect with the mitochondria-targeting drug lonidamine, whereas the response is negligible in combination with the DNA-targeting drug cisplatin. Curcumin plus ATO or lonidamine stimulates typical events of the mitochondrial executioner pathway (Bax and Bid activation, cytochrome c release, X-linked inhibitor of apoptosis down-regulation, and caspase-9/-3 activation) and causes mitochondrial transmembrane potential dissipation, which nevertheless represents a late event in the apoptotic response. Curcumin increases anion superoxide production, and its proapoptotic action in combination with ATO and lonidamine is mimicked by pro-oxidant agents (2-methoxyestradiol and H(2)O(2)) and prevented by antioxidant agents [Mn(III)tetrakis(4-benzoic acid)porphyrin chloride and N-acetyl-l-cysteine]. Within the assayed time period (16-24 h), curcumin does not significantly modify p38-mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase phosphorylation/activation or nuclear factor-κB activity, but it greatly stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and decreases Akt phosphorylation. Experiments using mitogen-activated protein kinase kinase/ERK inhibitors [2'-amino-3'-methoxyflavone (PD98059) and 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126)] and phosphatidylinositol 3-kinase inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) indicate that ERK activation does not mediate and even restrains apoptosis potentiation, whereas Akt down-regulation facilitates apoptosis generation. In summary, cotreatment with curcumin may represent a useful manner of increasing the efficacy of ATO and lonidamine as antitumor drugs in myeloid leukemia cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.110.168344