MG53 E3 Ligase-Dead Mutant Protects Diabetic Hearts From Acute Ischemic/Reperfusion Injury and Ameliorates Diet-Induced Cardiometabolic Damage

Cardiometabolic diseases, including diabetes and its cardiovascular complications, are the global leading causes of death, highlighting a major unmet medical need. Over the past decade, mitsugumin 53 (MG53), also called TRIM72, has emerged as a powerful agent for myocardial membrane repair and cardi...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 71; no. 2; pp. 298 - 314
Main Authors Feng, Han, Shen, Hao, Robeson, Matthew J, Wu, Yue-Han, Wu, Hong-Kun, Chen, Geng-Jia, Zhang, Shuo, Xie, Peng, Jin, Li, He, Yanyun, Wang, Yingfan, Lv, Fengxiang, Hu, Xinli, Zhang, Yan, Xiao, Rui-Ping
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cardiometabolic diseases, including diabetes and its cardiovascular complications, are the global leading causes of death, highlighting a major unmet medical need. Over the past decade, mitsugumin 53 (MG53), also called TRIM72, has emerged as a powerful agent for myocardial membrane repair and cardioprotection, but its therapeutic value is complicated by its E3 ligase activity, which mediates metabolic disorders. Here, we show that an E3 ligase-dead mutant, MG53-C14A, retains its cardioprotective function without causing metabolic adverse effects. When administered in normal animals, both the recombinant human wild-type MG53 protein (rhMG53-WT) and its E3 ligase-dead mutant (rhMG53-C14A) protected the heart equally from myocardial infarction and ischemia/reperfusion (I/R) injury. However, in diabetic db/db mice, rhMG53-WT treatment markedly aggravated hyperglycemia, cardiac I/R injury, and mortality, whereas acute and chronic treatment with rhMG53-C14A still effectively ameliorated I/R-induced myocardial injury and mortality or diabetic cardiomyopathy, respectively, without metabolic adverse effects. Furthermore, knock-in of MG53-C14A protected the mice from high-fat diet-induced metabolic disorders and cardiac damage. Thus, the E3 ligase-dead mutant MG53-C14A not only protects the heart from acute myocardial injury but also counteracts metabolic stress, providing a potentially important therapy for the treatment of acute myocardial injury in metabolic disorders, including diabetes and obesity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0012-1797
1939-327X
DOI:10.2337/db21-0322