Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure

The clustered regularly interspaced short palindromic repeats (CRISPR) system has recently been developed into a powerful genome-editing technology, as it requires only two key components (Cas9 protein and sgRNA) to function and further enables multiplex genome targeting and homology-directed repair...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 38970
Main Authors Yan, Qiang, Xu, Kun, Xing, Jiani, Zhang, Tingting, Wang, Xin, Wei, Zehui, Ren, Chonghua, Liu, Zhongtian, Shao, Simin, Zhang, Zhiying
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 12.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The clustered regularly interspaced short palindromic repeats (CRISPR) system has recently been developed into a powerful genome-editing technology, as it requires only two key components (Cas9 protein and sgRNA) to function and further enables multiplex genome targeting and homology-directed repair (HDR) based precise genome editing in a wide variety of organisms. Here, we report a novel and interesting strategy by using the Drosha-mediated sgRNA-shRNA structure to direct Cas9 for multiplex genome targeting and precise genome editing. For multiplex genome targeting assay, we achieved more than 9% simultaneous mutant efficiency for 3 genomic loci among the puromycin-selected cell clones. By introducing the shRNA against DNA ligase IV gene (LIG4) into the sgRNA-shRNA construct, the HDR-based precise genome editing efficiency was improved as more than 2-fold. Our works provide a useful tool for multiplex and precise genome modifying in mammalian cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep38970