High-temperature operation of polycrystalline diamond field-effect transistors
Operation of polycrystalline diamond field-effect transistors (FETs) at temperatures up to 285 degrees C and drain-to-source voltages of up to 100 V has been demonstrated. The devices were fabricated from B-doped polycrystalline diamond grown by a microwave plasma-enhanced chemical vapor deposition...
Saved in:
Published in | IEEE electron device letters Vol. 14; no. 2; pp. 66 - 68 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.02.1993
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Operation of polycrystalline diamond field-effect transistors (FETs) at temperatures up to 285 degrees C and drain-to-source voltages of up to 100 V has been demonstrated. The devices were fabricated from B-doped polycrystalline diamond grown by a microwave plasma-enhanced chemical vapor deposition (CVD) technique. At 150 degrees C, the devices exhibited saturation of drain current and a peak transconductance of 65 nS/mm. These are the first polycrystalline diamond devices to demonstrate saturation. Device characteristics at 250 degrees C also show saturation and increased transconductance of 300 nS/mm. Characterization was not performed at temperatures exceeding 285 degrees C due to gate leakage current above 10 nA.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/55.215110 |