Collective chemotaxis in a Voronoi model for confluent clusters

Collective chemotaxis, where single cells cannot climb a biochemical signaling gradient but clusters of cells can, has been observed in different biological contexts, including confluent tissues where there are no gaps or overlaps between cells. Although particle-based models have been developed tha...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 121; no. 23; pp. 4624 - 4634
Main Authors Lawson-Keister, E., Manning, M.L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.12.2022
The Biophysical Society
Online AccessGet full text

Cover

Loading…
More Information
Summary:Collective chemotaxis, where single cells cannot climb a biochemical signaling gradient but clusters of cells can, has been observed in different biological contexts, including confluent tissues where there are no gaps or overlaps between cells. Although particle-based models have been developed that predict important features of collective chemotaxis, the mechanisms in those models depend on particle overlaps, and so it remains unclear if they can explain behavior in confluent systems. Here, we develop an open-source code that couples a two-dimensional Voronoi simulation for confluent cell mechanics to a dynamic chemical signal that can diffuse, advect, and/or degrade and use the code to study potential mechanisms for collective chemotaxis in cellular monolayers. We first study the impact of advection on collective chemotaxis and delineate a regime where advective terms are important. Next, we investigate two possible chemotactic mechanisms, contact inhibition of locomotion and heterotypic interfacial tension, and demonstrate that both can drive collective chemotaxis in certain parameter regimes. We further demonstrate that the scaling behavior of cluster motion is well captured by simple analytic theories.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2022.10.029