Sexual dimorphism in the molecular mechanisms of insulin resistance during a critical developmental window in Wistar rats

Abstract Background Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is an early marker of metabolic dysfunction. However, IR also appears in physiological contexts during critical developmental windows. The molecular mechanisms of physiological IR ar...

Full description

Saved in:
Bibliographic Details
Published inCell communication and signaling Vol. 20; no. 1; pp. 1 - 154
Main Authors Ortiz-Huidobro, Rosa Isela, Larqué, Carlos, Velasco, Myrian, Chávez-Maldonado, Juan Pablo, Sabido, Jean, Sanchez-Zamora, Yuriko Itzel, Hiriart, Marcia
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.10.2022
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Background Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is an early marker of metabolic dysfunction. However, IR also appears in physiological contexts during critical developmental windows. The molecular mechanisms of physiological IR are largely unknown in both sexes. Sexual dimorphism in insulin sensitivity is observed since early stages of development. We propose that during periods of accelerated growth, such as around weaning, at postnatal day 20 (p20) in rats, the kinase S6K1 is overactivated and induces impairment of insulin signaling in its target organs. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage. Methods We determined systemic insulin sensitivity through insulin tolerance tests, glucose tolerance tests, and blood glucose and insulin levels under fasting and fed conditions at p20 and adult male and female Wistar rats. Furthermore, we quantified levels of S6K1 phosphorylated at threonine 389 (T389) (active form) and its target IRS1 phosphorylated at serine 1101 (S1101) (inhibited form). In addition, we assessed insulin signal transduction by measuring levels of Akt phosphorylated at serine 473 (S473) (active form) in white adipose tissue and skeletal muscle through western blot. Finally, we determined the presence and function of GLUT4 in the plasma membrane by measuring the glucose uptake of adipocytes. Results were compared using two-way ANOVA (With age and sex as factors) and one-way ANOVA with post hoc Tukey’s tests or t-student test in each corresponding case. Statistical significance was considered for P values < 0.05. Results We found that both male and female p20 rats have elevated levels of glucose and insulin, low systemic insulin sensitivity, and glucose intolerance. We identified sex- and tissue-related differences in the activation of insulin signaling proteins in p20 rats compared to adult rats. Conclusions Male and female p20 rats present physiological insulin resistance with differences in the protein activation of insulin signaling. This suggests that S6K1 overactivation and the resulting IRS1 inhibition by phosphorylation at S1101 may modulate to insulin sensitivity in a sex- and tissue-specific manner.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1478-811X
1478-811X
DOI:10.1186/s12964-022-00965-6